考研高数:微分方程。希望给出较为详细的分析思路和解答过程! 回答的好,会再加分!
2个回答
展开全部
1
y''-xy'-y=1
y''-(xy'+y+1)=0
(y+1)''=y'' y'=(y+1)'
(y+1)''-(x(y+1)'+(y+1))=0
(y+1)''=(xy+x)'
设u=y+1
u''=(xu)'
du'/dx=d(xu)/dx
d(xu)=du'
xu+C0=u'
x(y+1)+C0=(y+1)'
xy+x+C0=(y+1)'
(y+1)'|x=0 = y'|x=0=0
C0=0
xu=u'
du/u=xdx
lnu=x^2/2+C1
u=Ce^(x^2/2)
y+1=Ce^(x^2/2)
y(0)=0
C=1
特解y=e^(x^2/2)-1
2
如果方程是(x^2-1)dy + (2xy-cosx)dx=0
x^2dy+ydx^2=d(sinx+y)
d(x^2y)=d(sinx+y)
x^2y=sinx+y+C0
y(0)=1
0=1+C0
C0=-1
特解 x^2y=sinx+y-1
y''-xy'-y=1
y''-(xy'+y+1)=0
(y+1)''=y'' y'=(y+1)'
(y+1)''-(x(y+1)'+(y+1))=0
(y+1)''=(xy+x)'
设u=y+1
u''=(xu)'
du'/dx=d(xu)/dx
d(xu)=du'
xu+C0=u'
x(y+1)+C0=(y+1)'
xy+x+C0=(y+1)'
(y+1)'|x=0 = y'|x=0=0
C0=0
xu=u'
du/u=xdx
lnu=x^2/2+C1
u=Ce^(x^2/2)
y+1=Ce^(x^2/2)
y(0)=0
C=1
特解y=e^(x^2/2)-1
2
如果方程是(x^2-1)dy + (2xy-cosx)dx=0
x^2dy+ydx^2=d(sinx+y)
d(x^2y)=d(sinx+y)
x^2y=sinx+y+C0
y(0)=1
0=1+C0
C0=-1
特解 x^2y=sinx+y-1
更多追问追答
追问
请问第一题您的思路是~~?
追答
(xy)'=x'y+y (y+1)'=y' (y+1)''=y''
然后xu+C0=u' 应用了题设y'(0)=0 找到C0常数,
x(y+1)+C0=(y+1)'
xy+x+C0=(y+1)'
(y+1)'|x=0 = y'|x=0=0
C0=0
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询