如图,在等腰梯形ABCD中,对角线AC,BD互相垂直,该梯形的高和中位线有何大小关系

百度网友606c758
2011-11-23
知道答主
回答量:16
采纳率:0%
帮助的人:2.5万
展开全部
解:过点D作DE‖AC,交BC的延长线于点E.
∵AC⊥BD,DE‖AC
∴BD⊥DE
∵梯形ABCD是等腰梯形,
∴AC=BD
在⊿BDE中,BD⊥DE,DE=AC=BD
∴BE=√2BD
梯形的中位线长就等于等腰直角三角形BDE的中位线长,是1/2BE=√2/2BD
∵⊿BDE是等腰直角三角形,
∴BE边上的高是1/2BE=√2/2BD
由此可知:这个梯形的高等于它的中位线长。

参考资料: 度娘

爱发明的小学生
2011-11-17 · TA获得超过3177个赞
知道小有建树答主
回答量:395
采纳率:0%
帮助的人:452万
展开全部
设AD=x,BC=y,
由AB=CD,AC⊥BD,
∴AO=x√2/2,CO=y√2/2,
梯形面积=AC²/2,(1)
梯形面积=(x+y)×h/2(2)
由(1)S=[(x+y)²×(√2/2)²]/2=(x+y)²/4.
由(2)S=(x+y)×h/2,
(1)=(2)得:
(x+y)²/4=(x+y)h/2,
∴(x+y)/2=h,
由(x+y)/2是梯形中位线,
所以梯形中位线和高相等。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
837794782
2011-11-29
知道答主
回答量:24
采纳率:0%
帮助的人:2.9万
展开全部
设AD=x,BC=y,
由AB=CD,AC⊥BD,
∴AO=x√2/2,CO=y√2/2,
梯形面积=AC²/2,(1)
梯形面积=(x+y)×h/2(2)
由(1)S=[(x+y)²×(√2/2)²]/2=(x+y)²/4.
由(2)S=(x+y)×h/2,
(1)=(2)得:
(x+y)²/4=(x+y)h/2,
∴(x+y)/2=h,
由(x+y)/2是梯形中位线,
所以梯形中位线和高相等。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式