如图,在四棱锥P-ABCD中,底面ABCD是矩形,且PA⊥平面ABCD,PA=AD=2,AB=1,BM⊥PD于点M.

(1)求证AM⊥PD(2)求直线CD与平面ACM所成的角的余弦... (1)求证AM⊥PD(2)求直线CD与平面ACM所成的角的余弦 展开
明月松4999
2011-11-17 · TA获得超过13.4万个赞
知道大有可为答主
回答量:7987
采纳率:47%
帮助的人:3565万
展开全部
分析:(1)可通过证明PD⊥平面ABM由线面垂直的性质定理证明AM⊥PD;
(2)法一:求直线CD与平面ACM所成的角的余弦值,可通过作出其平面角,解三角形求之.
法二:用向量法给出空间坐标系,及各点的坐标,求出直线的的方向向量的坐标以及平面的法向量的坐标,再由公式 sinα=|CD→•n⇀|CD→||n→||求出线面角的正弦值,进而求出余弦值.
解答:菁优网(1)证明:∵PA⊥平面ABCD,AB⊂平面ABCD,∴PA⊥AB.
∵AB⊥AD,AD∩PA=A,AD⊂平面PAD,PA⊂平面PAD,
∴AB⊥平面PAD.
∵PD⊂平面PAD
∴AB⊥PD,
∵BM⊥PD,AB∩BM=B,AB⊂平面ABM,BM⊂平面ABM,∴PD⊥平面ABM.
∵AM⊂平面ABM,∴AM⊥PD.
(2)解法1:由(1)知,AM⊥PD,又PA=AD,
则M是PD的中点,在Rt△PAD中,
得 AM=2,在Rt△CDM中,得 MC=MD2+DC2=3,
∴ S△ACM=12AM•MC=62.
设点D到平面ACM的距离为h,由VD-ACM=VM-ACD,
得 13S△ACM•h=13S△ACD•12PA.解得 h=63,
设直线CD与平面ACM所成的角为θ,则 sinθ=hCD=63,
∴ cosθ=33.
∴直线CD与平面ACM所成的角的余弦值为 33.
解法2:如图所示,以点A为坐标原点,建立空间直角坐标系A-xyz,
则A(0,0,0),P(0,0,2),B(1,0,0),C(1,2,0),D(0,2,0),M(0,1,1).
∴ AC→=(1,2,0),AM→=(0,1,1),CD→=(-1,0,0).
设平面ACM的一个法向量为 n⇀=(x,y,z),
由 n⇀⊥AC→,n⇀⊥AM→可得: {x+2y=0y+z=0.
令z=1,得x=2,y=-1.∴ n⇀=(2,-1,1).
设直线CD与平面ACM所成的角为α,则 sinα=|CD→•n⇀|CD→||n→||=63.
∴ cosα= √3/3.∴直线CD与平面ACM所成的角的余弦值为 √3/3.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式