
设x≥0.y≥0.x+2y=0.5,求f(x)=log1/2(8xy+4y^2+1)得最值
1个回答
展开全部
x+2y=0.5 => y=(0.5-x)/2
x≥0.y≥0. => 0≤x≤0.5
f(x)=log1/2(8xy+4y^2+1)定义域为8xy+4y^2+1>0
设 u=8xy+4y^2+1>0
则u=8x*(0.5-x)/2+4(0.5-x)^2/4+1
=4x(0.5-x)+(0.5-x)^2+1
=2x-4x^2+0.25-x+x^2+1
=1.25+x-3x^2
=5/4-3(1/6-x)^2+1/12
=4/3-3(1/6-x)^2
≤4/3
当0≤x≤0.5时,0.5/2=1/4>1/6,∴u的最小值为u(0.5)=4/3-1/3=1
∴u的取值范围为1≤u≤4/3
log1/2 u为减函数,∴最大值为log1/2 1=0,最小值为log1/2 4/3
x≥0.y≥0. => 0≤x≤0.5
f(x)=log1/2(8xy+4y^2+1)定义域为8xy+4y^2+1>0
设 u=8xy+4y^2+1>0
则u=8x*(0.5-x)/2+4(0.5-x)^2/4+1
=4x(0.5-x)+(0.5-x)^2+1
=2x-4x^2+0.25-x+x^2+1
=1.25+x-3x^2
=5/4-3(1/6-x)^2+1/12
=4/3-3(1/6-x)^2
≤4/3
当0≤x≤0.5时,0.5/2=1/4>1/6,∴u的最小值为u(0.5)=4/3-1/3=1
∴u的取值范围为1≤u≤4/3
log1/2 u为减函数,∴最大值为log1/2 1=0,最小值为log1/2 4/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询