一道初二数学题,急!30分求一题!

如图1,一次函数y=kx-4k交x轴的正半轴于点A,交y轴的正半轴于点C。如图3,当k变化时,作直线y=kx-4k关于x轴对称的直线AC’,过点C作直线BC交线段OA于点... 如图1,一次函数y=kx-4k交x轴的正半轴于点A,交y轴的正半轴于点C。
如图3,当k变化时,作直线y=kx-4k关于x轴对称的直线AC’,过点C作直线BC交线段OA于点D,交AC’于B点,且∠OCD=二分之一的∠CAO。以下两个结论 1 AB+AC是定值 2 AC-AB是定值 这两个结论只有一个正确,请选出这个结论并证明。
展开
novelworm
2011-11-18 · TA获得超过1506个赞
知道小有建树答主
回答量:206
采纳率:0%
帮助的人:203万
展开全部
AB+AC是定值
首先AC的解析式y=kx-4k,所以A(4,0),C(0,-4k),AC=4√(1+k*k),tan∠CAO=-k
AB的解析式y=-kx+4k,所以C'(0,4k)
又有∠OCD=0.5∠CAO,根据二倍角正切公式 2tanα
tan2α=—————
1-tanα*tanα
解方程得到tan∠OCD=(1-√1+k*k)/k,那么tan∠ODC=1/tan∠OCD=k/(1-√1+k*k)
那么CB的解析式为y=-k/(1-√1+k*k)x-4k,与AC‘的解析式组成方程组解出B的坐标
B[-8(1-√1+k*k)/√1+k*k ,k*(8-4)/√1+k*k]
接下来可以求出AB=8-4√1+k*k,则AB+AC=8,是定值。
更多追问追答
追问
您可以用初二的知识回答吗?
追答
呃,我个人觉得这道题已经超出初二的范围了,要想求B的坐标,就必须求CB的解析式,就必然用到二倍角公式,这个是高中的知识...
手涿夜神
2011-11-18 · TA获得超过193个赞
知道答主
回答量:125
采纳率:0%
帮助的人:52.7万
展开全部
AC+AB=8
假设K=1,则∠OCA=∠OAC=45°,
过B做BE垂直于Y轴于E,则BA=BE=EC'=8-4√2,AC=4√2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
luwen_juan
2011-11-19
知道答主
回答量:26
采纳率:0%
帮助的人:8.5万
展开全部
把(1,4)代入y=kx+k得k=2
C(0,-4k),AC=4√(1+k*k),tan∠CAO=-k
AB的解析式y=-kx+4k,所以C'(0,4k)
又有∠OCD=0.5∠CAO,根据二倍角正切公式 2tanα
tan2α=—————
1-tanα*tanα
解方程得到tan∠OCD=(1-√1+k*k)/k,那么tan∠ODC=1/tan∠OCD=k/(1-√1+k*k)
那么CB的解析式为y=-k/(1-√1+k*k)x-4k,与AC‘的解析式组成方程组解出B的坐标
B[-8(1-√1+k*k)/√1+k*k ,k*(8-4)/√1+k*k]
接下来可以求出AB=8-4√1+k*k,则AB+AC=8,是定值。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
浅色雨点
2011-11-18
知道答主
回答量:10
采纳率:0%
帮助的人:4.1万
展开全部
把(1,4)代入y=kx+k得k=2
当x=0时y=2所以A(0,2)
同理B(-1,0)
所以AB长为√5
PQ长为√(a^2+b^2)
所以√(a^2+b^2)=√5
即a^2+b^2=5(a>0,b>0)
(2)AB斜率为2
所以QP斜率为-1/2
设b=1/2a+d
求出与x轴y轴交点
焦点坐标的平方和为(√5)^2求出d
然后求出交点坐标,可知ab
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式