如图,抛物线y=ax²-2ax-3与x轴交于点A,B(A点在B点左侧),与y轴交于点C,且OB=OC

(1)求点A,B,c坐标(2)连接BC,在BC下方的抛物线y=ax²-2ax-3上是否存在点D,使△BCD的面积最大?若存在,请求出△BCD的最大面积;若不存在... (1)求点A,B,c坐标
(2)连接BC,在BC下方的抛物线y=ax²-2ax-3上是否存在点D,使△BCD的面积最大?若存在,请求出△BCD的最大面积;若不存在,请说明理由
(3)在抛物线y=ax²-2ax-3上求出点Q的坐标,使以B,C,Q三点为顶点的三角形是直角三角形。
请求各位帮忙解析下,写出详细具体的过程,谢谢了。
展开
好博文
2011-11-19 · TA获得超过2912个赞
知道小有建树答主
回答量:444
采纳率:0%
帮助的人:532万
展开全部
解:(1)y=a(x-1)^2-a^2-3,所以抛物线的对称轴是x=1,带入x=0解得C(0,-3)
∵OB=OC
∴B(-3,0)或(3,0)
∵A点在B点左侧
∴若B(-3,0),则对称轴一定不是x=1
∴所以B(3,0)
∴抛物线过(3,0)点,带入(3,0)点解得a=1
所以抛物线解析式为y=x^2-2x-3=(x+1)(x-3)
所以A(-1,0)
答:A(-1,0),B(3,0),C(0-3)

(2)存在
△BCD的底BC已经确定,且BC=3√2,所以△BCD在BC边上的高越大,S△BCD就越大
过D点做BC的平行线l,高就等于直线l到直线BC的距离
距离最大时,l与抛物线相切,并且切点为D
BC的解析式为:y=x-3
∵BC∥直线l
∴设直线l的解析式为:y=x+m
则l与抛物线的交点:x^2-2x-3=x+m
x^2-3x-m-3=0
此方程△=0时,解出的x就是切点D的横坐标
当△=0时,x=3/2,m=-21/4
所以使△BCD的面积最大得D点得坐标为(3/2,-15/4)
高h=(-3-m)/√2=9√2/8
∴S△BCDmax=BC·h/2=27/8

(3)平面直角坐标系中两直线垂直的性质:两直线的斜率乘积为-1(斜率是指y=kx+b中的k,当直线垂直于x轴时,斜率不存在)
因为Q在抛物线上
所以设Q(x,x^2-2x-3)
kBC=1
kQC=(yQ-yC)/(xQ-xC)=(x^2-2x)/x=x-2
kBQ=(yQ-yB)/(xQ-xB)=(x^2-2x-3)/(x-3)=x+1
分类讨论:
当QC⊥QB时:
kQC·kQB=-1
(x-2)(x+1)=-1
解得x=(1-√5)/2或(1+√5)/2
所以Q1((1-√5)/2,(√5-5)/2),Q2((1+√5)/2,-(5+√5)/2)

当BC⊥CQ时:
kBC·kCQ=-1
解得x=1
所以Q3(1,-4)

当BC⊥BQ时
kBC·kBQ=-1
解得x=-2
所以Q4(-2,5)

综上,Q有4个位置符合题意:
Q1((1-√5)/2,(√5-5)/2)
Q2((1+√5)/2,-(5+√5)/2)
Q3(1,-4)
Q4(-2,5)
sunfei0729
2011-11-19 · 超过12用户采纳过TA的回答
知道答主
回答量:151
采纳率:0%
帮助的人:50.6万
展开全部
fgh
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式