棱长为1的正方体ABCD-A1B1C1D1中,M、N分别是线段BB1,B1C1的中点,则直线MN到平面ACD1的距离为

RT... RT 展开
看涆余
2011-11-20 · TA获得超过6.7万个赞
知道大有可为答主
回答量:7626
采纳率:85%
帮助的人:4361万
展开全部
连结C1B、AD1,
∵MN是△B1C1B的中位线,
∴MN//BC1,
而∵C1D1//=AB,
∴四边形ABC1D1是平行四边形,
∴BC1//AD1,
∴MN//AD1,
∴MN//平面CAD1,
∴MN上任一点至平面CAD1的距离就是MN至平面CAD1的距离,
连结底正方形对角线AC、BD,交于O,连结MO、D1O,
∵MC=MA=√5/2,
O为AC中点,
∴MO⊥AC,
MO=√(BM^2+BO^2)=√(1/4+1/2)=√3/2,
OD=√(1/2+1)=√6/2,
MD=√(B1M^2+B1D1^2)=√(1/4+2)=3/2,
MO^2+OD1^2=9/4,
MD1^2=9/4,
∴△MOD1是RT△,
∴MO⊥OD1,
∵OD1∩AC=O,
∴MO⊥平面CAD1,
MO是M点至平面CAD1的距离,
MO=√3/2,
∴直线MN到平面ACD1的距离为√3/2。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式