
设函数f(x)是定义在(0,正无穷)上的增函数,且f(x/y)=f(x)-f(y),f(6)=1
1个回答
展开全部
∵f(x/y)=f(x)-f(y) ∴f(36/6)=f(36)-f(6) ∴f(36)=2f(6)=2
∵f(x+3)-f(1/x)<2 ∴f(x²+3x)<f(36) ∵f(x)是定义在(0,正无穷)上的增函数
∴x²+3x<36 ∴﹣(3+√153)/2<x<(﹣3+√153)/2
∵函数f(x)是定义在(0,正无穷)上 ∴x+3>0 1/x>0 ∴x>0
∴0<x<(﹣3+√153)/2
∵f(x+3)-f(1/x)<2 ∴f(x²+3x)<f(36) ∵f(x)是定义在(0,正无穷)上的增函数
∴x²+3x<36 ∴﹣(3+√153)/2<x<(﹣3+√153)/2
∵函数f(x)是定义在(0,正无穷)上 ∴x+3>0 1/x>0 ∴x>0
∴0<x<(﹣3+√153)/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询