在平面直角坐标系中A(a,0)B(0,b),且a,b满足(a-4)的平方+根号b+4=0,点C,B关于x轴对称.

1.求A,C两点的坐标2.点M为射线OA上A点右侧一动点,过点M作MN⊥CM交直线AB于N,连BM,是否存在点M,使△AMN的面积=3/2△AMB的面积,若存在,求出点M... 1.求A,C两点的坐标
2.点M为射线OA上A点右侧一动点,过点M作MN⊥CM交直线AB于N,连BM,是否存在点M,使△AMN的面积=3/2△AMB的面积,若存在,求出点M的坐1.求A,C两点的坐标
3.点p为第二象限角平分线上一动点,将射线BP绕B点逆时针旋转30°交x轴于点Q,连接PQ,在点P运动过程中,当角BPQ=45°时,求BQ的长。
那位高手帮忙一下,急啊!!!!!!!!特别是第3题
展开
544871738
2011-11-21 · TA获得超过1283个赞
知道答主
回答量:257
采纳率:0%
帮助的人:84.5万
展开全部
我说的辅助线你自己可以在题目上画出来的。

【1】∵(a-4)²+根号b+4=0
∴a-4=0 b+4=0
∴a=4,b=-4
∴A(4,0) B(0,-4)
又∵C、B关于X轴对称
∴C(0,4)

【2】过N作NH⊥X轴于H,
∵CO=4,BO=4 OA=4
∴CO=BO
又∵OM⊥BC
∴CM=BM
连CA,
同理可证CA=BA
∴∠CAO=∠BAO=45°
∴∠CAB=90°
又∵CM=BM
∴∠MCO=∠MBO
又∵CA=BA
∴∠ACO=∠ABO
∴∠MCO-∠ACO=∠MBO-∠ABO
即∠MCA=∠MBA
∵∠CAB=∠NAM ∠CAN=∠NMC
∴∠ACM=∠ANM=∠NBM
∴BM=MN
∴CM=MN
又∵∠CMO+∠NMH=90° ∠NMH+∠MNH=90°
∴∠CMO=∠MNH
在△CMO和△MNH中
∠CMO=∠MNH
∠COM=∠MHN
CM=MN
∴△CMO≌△MNH(AAS)
∴OM=NH
又∵S△AMN=(AM·NH)÷2
S△AMB=(AM·OB)÷2
S△AMN=二分之三S△AMB
∴NH=二分之三OB
又∵OB=4
∴NH=6
∴OM=6
∴M(6,0)

【3】过P作PM⊥Y轴于M,PN⊥X轴于N,FH⊥PQ交Y轴于H
∵∠QPN+∠NPH=90° ∠MPH+∠NPH=90°
∴∠QPN=∠MPN
又∵PO平分∠MOQ PM⊥Y轴,PN⊥X轴
∴PM=PN
在△PQN和△PHM中
∠QPN=∠HPM
PN=PM
∠PNQ=∠PMH
∴△PQN≌△PHM(ASA)
∴PQ=PH
又∵∠BPQ=45° ∠QPH=90°
∴∠BPH=45°
在△QPB和△HPB中
QP=HP
∠BPQ=∠BPH
PB=PB
∴△QPB≌△HPB(SAS)
∴∠PBO=∠PBQ=30°
∴∠OQB=30°
在Rt△QOB中 OB=二分之一QB
又∵OB=4
∴BQ=8
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式