在三角形ABC中∠ACB=∠2B,如图,1,∠C=90,AD为△ABC的角平分线时,在AB上截取AE=AC,
在三角形ABC中∠ACB=∠2B,如图,1,∠C=90,AD为△ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD(1).如图2,当∠C≠90°A...
在三角形ABC中∠ACB=∠2B,如图,1,∠C=90,AD为△ABC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD
(1). 如图2,当∠C≠90°AD为△ABC的角平分线时,线段AB.AC.CD又有怎样的数量关系 展开
(1). 如图2,当∠C≠90°AD为△ABC的角平分线时,线段AB.AC.CD又有怎样的数量关系 展开
展开全部
解:(1)猜想:AB=AC+CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
证明:在BA的延长线上绝漏截取AE=AC,连接ED.
∵AD平并顷烂分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB.
又∠ACB=2∠B,乎并∠FED=∠B+∠EDB,∠EDB=∠B.
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
证明:在BA的延长线上绝漏截取AE=AC,连接ED.
∵AD平并顷烂分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB.
又∠ACB=2∠B,乎并∠FED=∠B+∠EDB,∠EDB=∠B.
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
展开全部
解:(1)猜想:AB=AC+CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.绝漏
证明:在BA的延长线上截取AE=AC,连接ED.
∵AD平分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,乎并AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB,又∠ACB=2∠B
又∵∠FED=2∠B,∠FED=∠并顷烂B+∠EDB,
∴∠EDB=∠B,
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
证明:如图②,在AB上截取AE=AC,连接DE,
∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∵∠AED=∠B+∠EDB,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.绝漏
证明:在BA的延长线上截取AE=AC,连接ED.
∵AD平分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,乎并AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB,又∠ACB=2∠B
又∵∠FED=2∠B,∠FED=∠并顷烂B+∠EDB,
∴∠EDB=∠B,
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图哪
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-04-18
展开全部
同意楼上答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询