用拉格朗日中值定理证明 当x>0时,ln{[(e^x)-1]/x}<x
2个回答
展开全部
Solution:
ln{[(e^x)-1]/x}<x <=> [(e^x)-1]/e^x < x
Considering function f(x)= [(e^x)-1]/e^x on the interval [0,x] , f(x) is continuous on [0,x] and differenciable on (0,x)
Hence, [f(x)-f(0)]/[x-0]=f '(c) where c is on (0,x)
Note that f '(x)=1/ e^x <1 (since x >0 )
Hence, [f(x)-f(0)]/[x-0]<1 <=> [(e^x)-1]/e^x < x <=> ln{[(e^x)-1]/x}<x when x >0.
ln{[(e^x)-1]/x}<x <=> [(e^x)-1]/e^x < x
Considering function f(x)= [(e^x)-1]/e^x on the interval [0,x] , f(x) is continuous on [0,x] and differenciable on (0,x)
Hence, [f(x)-f(0)]/[x-0]=f '(c) where c is on (0,x)
Note that f '(x)=1/ e^x <1 (since x >0 )
Hence, [f(x)-f(0)]/[x-0]<1 <=> [(e^x)-1]/e^x < x <=> ln{[(e^x)-1]/x}<x when x >0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询