求不定积分∫1/1+根号(1-x^2)dx
2个回答
展开全部
∫dx/(1+√(1-x^2))
x=sinu dx=cosudu √(1-x^2)=cosu
tan(u/2)=sinu/(1+cosu)=x/(1+√(1-x^2))
=∫cosudu/(1+cosu)
=∫[1-1/(1+cosu)]du
=u-∫du/(1+cosu)
=u-∫d(u/2)/(cos(u/2))^2
=u-tan(u/2)+C
=arcsinx - x/(1+√(1-x^2)) +C
x=sinu dx=cosudu √(1-x^2)=cosu
tan(u/2)=sinu/(1+cosu)=x/(1+√(1-x^2))
=∫cosudu/(1+cosu)
=∫[1-1/(1+cosu)]du
=u-∫du/(1+cosu)
=u-∫d(u/2)/(cos(u/2))^2
=u-tan(u/2)+C
=arcsinx - x/(1+√(1-x^2)) +C
追问
tan(u/2)=sinu/(1+cosu)=x/(1+√(1-x^2))请问这一步怎么化的?
追答
tan(u/2)=sin(u/2)/cos(u/2)=[2sin(u/2)cos(u/2)]/[2(cosu/2)^2]=sinu/(1+cosu)
x=sinu cosu=√(1-x^2)
tan(u/2)=x/(1+√(1-x^2))
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |