求导公式
2个回答
展开全部
几种常见函数的导数公式:
① C'=0(C为常数函数)
② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 。
③ (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)
⑤ (e^x)' = e^x (a^x)' = (a^x)lna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =x^(-1) /lna(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)
【其中第4类不用记,那是大学的内容】
① C'=0(C为常数函数)
② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数 。
③ (sinx)' = cosx (cosx)' = - sinx (tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 -(cotx)'=1/(sinx)^2=(cscx)^2=1+(cotx)^2 (secx)'=tanx·secx (cscx)'=-cotx·cscx (arcsinx)'=1/(1-x^2)^1/2 (arccosx)'=-1/(1-x^2)^1/2 (arctanx)'=1/(1+x^2) (arccotx)'=-1/(1+x^2) (arcsecx)'=1/(|x|(x^2-1)^1/2) (arccscx)'=-1/(|x|(x^2-1)^1/2)
④(sinhx)'=coshx (coshx)'=sinhx (tanhx)'=1/(coshx)^2=(sechx)^2 (coth)'=-1/(sinhx)^2=-(cschx)^2 (sechx)'=-tanhx·sechx (cschx)'=-cothx·cschx (arsinhx)'=1/(x^2+1)^1/2 (arcoshx)'=1/(x^2-1)^1/2 (artanhx)'=1/(x^2-1) (|x|<1) (arcothx)'=1/(x^2-1) (|x|>1) (arsechx)'=1/(x(1-x^2)^1/2) (arcschx)'=1/(x(1+x^2)^1/2)
⑤ (e^x)' = e^x (a^x)' = (a^x)lna (ln为自然对数) (Inx)' = 1/x(ln为自然对数) (logax)' =x^(-1) /lna(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)
【其中第4类不用记,那是大学的内容】
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
lny=2xlnx (lny)'=(2xlnx)' y'/y=2(lnx +1) y'=2y(lnx +1)=2x²ˣ(1+lnx)=x²ˣ(2+2lnx) 要点: 1、复合函数求导,由外向内逐步求导...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
求导公式
c'=0(c为常数)
(x^a)'=ax^(a-1),a为常数且a≠0
(a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a>0且 a≠1
(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
(uv)'=uv'+u'v
(u+v)'=u'+v'
(u/)'=(u'v-uv')/^2
c'=0(c为常数)
(x^a)'=ax^(a-1),a为常数且a≠0
(a^x)'=a^xlna
(e^x)'=e^x
(logax)'=1/(xlna),a>0且 a≠1
(lnx)'=1/x
(sinx)'=cosx
(cosx)'=-sinx
(tanx)'=(secx)^2
(secx)'=secxtanx
(cotx)'=-(cscx)^2
(cscx)'=-csxcotx
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
(shx)'=chx
(chx)'=shx
(uv)'=uv'+u'v
(u+v)'=u'+v'
(u/)'=(u'v-uv')/^2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询