
求二次函数解析式
已知一个二次函数图像的顶点坐标为(4,-2),抛物线交X轴与A、B两点,交Y轴与C点,△ABC的面积为12,求此二次函数的解析式。过程具体一点。...
已知一个二次函数图像的顶点坐标为(4,-2),抛物线交X轴与A、B两点,交Y轴与C点,△ABC的面积为12,求此二次函数的解析式。
过程具体一点。 展开
过程具体一点。 展开
3个回答
展开全部
依题意可设f(x)=a(x-4)^2-2=a(x^2-8x+16-2/a)
设x1, x2为f(x)=0的两根,则有:
|AB|^2=(x1-x2)^2=(x1+x2)^2-4x1x2=8^2-4(16-2/a)=8/a, 所以a需大于0.
x=0时,Y轴上的截距c=16a-2
面积=12=1/2* |16a-2|*√(8/a)
化为(8a-1)^2=72a^2
即8a^2+16a-1=0
取正根得:a=-1+3√2/4, 即得函数式。
设x1, x2为f(x)=0的两根,则有:
|AB|^2=(x1-x2)^2=(x1+x2)^2-4x1x2=8^2-4(16-2/a)=8/a, 所以a需大于0.
x=0时,Y轴上的截距c=16a-2
面积=12=1/2* |16a-2|*√(8/a)
化为(8a-1)^2=72a^2
即8a^2+16a-1=0
取正根得:a=-1+3√2/4, 即得函数式。

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
根据顶点坐标(4,-2),可设解析式为 y+2=a(x-4)²
分别设A(x1,0),B(x2,0),C(0,y3)
则有 2=a(x-4)²=ax²-8ax+16a (1) y3=16a-2 (2)
x1+x2=8, x1x2=16-2/a => |AB|²=|x1-x2|²=|(x1+x2)²-4x1x2|=|64-(64-8/a)|=|8/a| => |AB|=√|8/a|
S△ABC=1/2*|AB|*y3=1/2*√|8/a|*(16a-2)=12 => |8/a|*(8a-1)²=12²
解得 1/2或1/32
∴二次函数的解析式为:y=1/2*(x-4)²-2 或 y=1/32*(x-4)²-2
希望对你有帮助
分别设A(x1,0),B(x2,0),C(0,y3)
则有 2=a(x-4)²=ax²-8ax+16a (1) y3=16a-2 (2)
x1+x2=8, x1x2=16-2/a => |AB|²=|x1-x2|²=|(x1+x2)²-4x1x2|=|64-(64-8/a)|=|8/a| => |AB|=√|8/a|
S△ABC=1/2*|AB|*y3=1/2*√|8/a|*(16a-2)=12 => |8/a|*(8a-1)²=12²
解得 1/2或1/32
∴二次函数的解析式为:y=1/2*(x-4)²-2 或 y=1/32*(x-4)²-2
希望对你有帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:依题意得,y=a(x-4)²-2
=ax²-8ax+(16a-2)
S△ABC=1/2*|16a-2|*(2*4)=12
∴|16a-2|=3
∴16a-2=3或16a-2=-3
∴a=5/16或a=-1/16
∴二次函数的解析式是y=5/16x²-5/2x+3或y=-1/16x²-1/2x-3
=ax²-8ax+(16a-2)
S△ABC=1/2*|16a-2|*(2*4)=12
∴|16a-2|=3
∴16a-2=3或16a-2=-3
∴a=5/16或a=-1/16
∴二次函数的解析式是y=5/16x²-5/2x+3或y=-1/16x²-1/2x-3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询