3维向量组1:α1,α2和2:β1,β2都线性无关,证存在非零向量β,β可由向量组1线性表示,也可由2线性表
2个回答
2011-11-22
展开全部
因为α1,α2,β1,β2是三维向量
若α1,α2,β1线性无关,则β2可以由α1,α2,β1线性表出,不妨设β2=a1α1+a2α2+b1β1
令β=β2-b1β1=a1α1+a2α2即满足条件
若α1,α2,β1线性相关,则β1可由α1,α2线性表出,不妨有β1=a1α1+a2α2
则令β=β1即可
若α1,α2,β1线性无关,则β2可以由α1,α2,β1线性表出,不妨设β2=a1α1+a2α2+b1β1
令β=β2-b1β1=a1α1+a2α2即满足条件
若α1,α2,β1线性相关,则β1可由α1,α2线性表出,不妨有β1=a1α1+a2α2
则令β=β1即可
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询