3维向量组1:α1,α2和2:β1,β2都线性无关,证存在非零向量β,β可由向量组1线性表示,也可由2线性表

lry31383
高粉答主

2011-11-22 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明: 因为4个3维向量构成的向量组α1,α2,β1,β2线性相关
所以存在不全为0的数 k1,k2,k3,k4 满足
k1α1+k2α2+k3β1+k4β2=0
令 k1α1+k2α2=-k3β1-k4β2=β.
则 β≠0 (否则由已知得 k1,k2,k3,k4全为0.)
所以存在非零向量β可由两个向量组线性表示.
来自:求助得到的回答
匿名用户
2011-11-22
展开全部
因为α1,α2,β1,β2是三维向量
若α1,α2,β1线性无关,则β2可以由α1,α2,β1线性表出,不妨设β2=a1α1+a2α2+b1β1
令β=β2-b1β1=a1α1+a2α2即满足条件
若α1,α2,β1线性相关,则β1可由α1,α2线性表出,不妨有β1=a1α1+a2α2
则令β=β1即可
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式