定积分题目
1个回答
展开全部
∫dx/[2+√(4+x^2)]
=∫d(x/2)/[1+√(1+(x/2)^2)]
x/2=tanu d(x/2)=secu^2du 1+√(1+(x/2)^2)=1+secu
=∫secu^2du/(1+secu)
=∫du/(cosu^2+cosu)
=∫[(cosu+1)-cosu]du/(cosu^2+cosu)
=∫du/cosu-∫du/(1+cosu)
1+cosu=2(cos(u/2))^2
=∫dsinu/(1-sinu^2) -∫d(u/2)/cos(u/2)^2
=(1/2)ln|(1+sinu)/(1-sinu)| - tan(u/2) +C
=∫d(x/2)/[1+√(1+(x/2)^2)]
x/2=tanu d(x/2)=secu^2du 1+√(1+(x/2)^2)=1+secu
=∫secu^2du/(1+secu)
=∫du/(cosu^2+cosu)
=∫[(cosu+1)-cosu]du/(cosu^2+cosu)
=∫du/cosu-∫du/(1+cosu)
1+cosu=2(cos(u/2))^2
=∫dsinu/(1-sinu^2) -∫d(u/2)/cos(u/2)^2
=(1/2)ln|(1+sinu)/(1-sinu)| - tan(u/2) +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询