线性代数基础解系的求法
如何求解线性代数的基础解系?请详细讲解一下,谢谢!主要就是令自由未知量一个为1,其余为零,可得对应的齐次方程组的基础解系这个步骤不是太理解...
如何求解线性代数的基础解系?请详细讲解一下,谢谢!
主要就是令自由未知量一个为1, 其余为零,可得对应的
齐次方程组的基础解系这个步骤不是太理解 展开
主要就是令自由未知量一个为1, 其余为零,可得对应的
齐次方程组的基础解系这个步骤不是太理解 展开
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
展开全部
就以齐次方程组为例:
假如是3阶矩阵
r(A)=1
矩阵变换之后不就是只剩一个方程了吗?
这时候,你可以设x3为1,x2为0,得出x1
然后设x3为0,x2为1,得出x1
你可能会疑惑为什么要这么设,凭什么这么设,原因很简单,
因为只要(0,1)和(1,0)肯定无关,所以所得解就无关,而这个方程基础解系的个数为n-r(A)=2个
如果r(A)=2的话,就剩下来两个方程了,一般都设x3=1,原因就是因为这样计算简便,没别的原因
假如是3阶矩阵
r(A)=1
矩阵变换之后不就是只剩一个方程了吗?
这时候,你可以设x3为1,x2为0,得出x1
然后设x3为0,x2为1,得出x1
你可能会疑惑为什么要这么设,凭什么这么设,原因很简单,
因为只要(0,1)和(1,0)肯定无关,所以所得解就无关,而这个方程基础解系的个数为n-r(A)=2个
如果r(A)=2的话,就剩下来两个方程了,一般都设x3=1,原因就是因为这样计算简便,没别的原因
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
参考书籍
线性代数学习指导
作 者:张小向,陈建龙 编
出 版 社:科学出版社
线性代数学习指导
作 者:张小向,陈建龙 编
出 版 社:科学出版社
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询