如图a,b,分别是x轴位于原点左,右两侧的点,点m(p,3)在第一象限直线ma交y于点c(0.2)直线bm交y轴于
如图a,b,分别是x轴位于原点左,右两侧的点,点m(p,3)在第一象限直线ma交y于点c(0.2)直线bm交y轴于点d,S三角形aom(1)求点a的坐标及p的值(2)若s...
如图a,b,分别是x轴位于原点左,右两侧的点,点m(p,3)在第一象限直线ma交y于点c(0.2)直线bm交y轴于点d,S三角形aom
(1)求点a的坐标及p的值
(2)若s△dom,求bd的解析式 展开
(1)求点a的坐标及p的值
(2)若s△dom,求bd的解析式 展开
4个回答
展开全部
1)求S三角形COP
解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
解:可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
解:S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
解:可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4, FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4, 0), P点坐标为(2, 3), p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
解:因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD。
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3. D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
展开全部
拜托,题写的都不清不楚,你这种人没人会理你的,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
图呢???是初二的吧,,能把题目发清楚么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询