二次函数y=ax方+bx+c(a不等于零 若方程ax方+bx+c=k有两个不相等的实数根,求K的取值范围
3个回答
展开全部
对称轴x=-b/2a=2,得:b=-4a;
由韦达定理,两根之积:c/a=3,得:c=3a;
所以,y=ax²-4ax+3a (a≠0)
方程:ax²+bx+c=k
即:ax²-4ax+3a-k=0 有两个不等的实根;
所以:△=16a²-4a(3a-k)>0
(1)a<0时,同除4a,不等号要变向:4a-(3a-k)<0;即:a+k<0,所以:k<-a;
则k要小于-a的最小值,因为a<0,所以:-a>0
所以:k≦0;
(2)a>0时,同除4a:4a-(3a-k)>0;即:a+k>0,所以:k>-a;
则k要大于-a的最大值,因为a>0,所以:-a<0;
所以:k≧0;
综上,a<0时,k的取值范围是k≦0;
a>0时,k的取值范围是k≧0;
希望能帮到你,如果不懂,请Hi我,祝学习进步!
由韦达定理,两根之积:c/a=3,得:c=3a;
所以,y=ax²-4ax+3a (a≠0)
方程:ax²+bx+c=k
即:ax²-4ax+3a-k=0 有两个不等的实根;
所以:△=16a²-4a(3a-k)>0
(1)a<0时,同除4a,不等号要变向:4a-(3a-k)<0;即:a+k<0,所以:k<-a;
则k要小于-a的最小值,因为a<0,所以:-a>0
所以:k≦0;
(2)a>0时,同除4a:4a-(3a-k)>0;即:a+k>0,所以:k>-a;
则k要大于-a的最大值,因为a>0,所以:-a<0;
所以:k≧0;
综上,a<0时,k的取值范围是k≦0;
a>0时,k的取值范围是k≧0;
希望能帮到你,如果不懂,请Hi我,祝学习进步!
展开全部
X轴交于点(1,0)(3,0)所以y=a(x-1)(x-3) 方程ax²+bx+c=a(x-1)(x-3) =k
△=16a²-4(3a-k)>0 16a²-12a+4k=4a²-3a+k=4(x-3/8a)²-(9/64)a²+k>0
是不是还有条件?(最高点点纵坐标未知)是不是对称轴x=2的y值是最高的?没看懂
△=16a²-4(3a-k)>0 16a²-12a+4k=4a²-3a+k=4(x-3/8a)²-(9/64)a²+k>0
是不是还有条件?(最高点点纵坐标未知)是不是对称轴x=2的y值是最高的?没看懂
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
少条件,要不只能回答当a大于0时K大于4a+2b+c;当a小于0时K小于4a+2b+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询