已知f(x)是定义在[-1,1]上奇函数,且f(1)=1,若a、b€[1,-1],a+b不等于0,且f(a)+f(b)/a+b>0。
已知f(x)是定义在[-1,1]上奇函数,且f(1)=1,若a、b€[1,-1],a+b不等于0,且f(a)+f(b)/a+b>0。(1)判断f(x)在[-1...
已知f(x)是定义在[-1,1]上奇函数,且f(1)=1,若a、b€[1,-1],a+b不等于0,且f(a)+f(b)/a+b>0。(1)判断f(x)在[-1,1]上的单调性,并证明你的结论。(2)若f(x)小于等于m^2-2am+1对所有的x€[-1,1]、a€[-1,1}恒成立,求实数m的取值范围。
展开
5个回答
展开全部
(1)设x1,x2∈[-1,1]且x1<x2,在[f(a)+f(b)]/(a+b)>0中取a=x2,b=-x1,得
[f(x2)+f(-x1)]/(x2-x1)>0
由于f(x)是奇函数,且x2-x1>0
所以 f(x2)-f(x1)>0,从而(x)在[-1,1]上是增函数。
(2)若f(x)≤m²-2am+1对所有的x∈[-1,1]、a∈[-1,1]恒成立,
则 [f(x)]max≤m²-2am+1,
即 f(1)≤m²-2am+1,
所以 m²-2am≥0 对于a∈[-1,1]恒成立
①当m=0时,不等式化为0≥0,成立;
②当m≠0时,令g(a)=m²-2am,则g(a)是单调的,
于是m²-2am≥0 对于a∈[-1,1]恒成立等价于g(1)≥0且g(-1)≥0
即m²-2m≥0且m²+2m≥0,解得m≥2或m≤-2
所以m的取值范围是m≥2或m≤-2或m=0
[f(x2)+f(-x1)]/(x2-x1)>0
由于f(x)是奇函数,且x2-x1>0
所以 f(x2)-f(x1)>0,从而(x)在[-1,1]上是增函数。
(2)若f(x)≤m²-2am+1对所有的x∈[-1,1]、a∈[-1,1]恒成立,
则 [f(x)]max≤m²-2am+1,
即 f(1)≤m²-2am+1,
所以 m²-2am≥0 对于a∈[-1,1]恒成立
①当m=0时,不等式化为0≥0,成立;
②当m≠0时,令g(a)=m²-2am,则g(a)是单调的,
于是m²-2am≥0 对于a∈[-1,1]恒成立等价于g(1)≥0且g(-1)≥0
即m²-2m≥0且m²+2m≥0,解得m≥2或m≤-2
所以m的取值范围是m≥2或m≤-2或m=0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |