关于线性代数欧氏空间的证明。
证明:欧氏空间V中,若β与α₁,α₂,...,ὰm均正交,则β与α₁,α₂,...,ὰm的任一线性组合...
证明:欧氏空间V中,若β与α₁,α₂,...,ὰm均正交,则β与α₁,α₂,...,ὰm的任一线性组合(i=1~m)∑k̀iὰi 都正交。
展开
2个回答
展开全部
设V是一个欧氏空间(n维实内积空间),f:v->v是一个映射. 如果对任意的a然后就利用这一性质来证明线性性。只需验证: (f(kx)-kf(x),f(kx)-kf
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由已知 (β,αi) = 0, i=1,2,...,m
所以 (β, ∑kiαi) = ∑(β,kiαi) = ∑ki(β,αi) = 0.
所以 β 与 ∑kiαi 正交.
所以 (β, ∑kiαi) = ∑(β,kiαi) = ∑ki(β,αi) = 0.
所以 β 与 ∑kiαi 正交.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询