5个回答
展开全部
f(x)的一个原函数是F(x),则F(x)'=f(x),
所以:(f(t)在0到x上的积分)'=(F(x)-F(0))'=(F(x))'-(F(0))'=f(x)
所以:(f(t)在0到x上的积分)'=(F(x)-F(0))'=(F(x))'-(F(0))'=f(x)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
展开全部
这是积分上限函数,它是f(x)的一个原函数,所以它的导数是f(x),你老师没证明吗?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
积分上限求导有专门的公式。你的f(x)-f(0)和牛顿莱布尼茨公式搞混了吧?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
定义
设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0).
如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.
函数的可导性与导函数
一般地,假设一元函数 y=f(x )在 点x0的某个邻域N(x0,δ)内有定义,当自变量取的增量Δx=x-x0时,函数相应增量为 △y=f(x0+△x)-f(x0),若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限,就说函数f(x)在x0点可导,并将这个极限称之为f在x0点的导数或变化率.
“点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.
设函数y=f(x)在点x0的某个邻域N(x0,δ)内有定义,当自变量x在x0处有增量△x(设x0+△x∈N(x0,δ)),函数y=f(x)相应的增量为△y=f(x0+△x)-f(x0).
如果当△x→0时,函数的增量△y与自变量的增量△x之比的极限lim △y/△x=lim [f(x0+△x)-f(x0)]/△x存在,则称这个极限值为f(x)在x0处的导数或变化率.通常可以记为f'(x0)或f'(x)|x=x0.
函数的可导性与导函数
一般地,假设一元函数 y=f(x )在 点x0的某个邻域N(x0,δ)内有定义,当自变量取的增量Δx=x-x0时,函数相应增量为 △y=f(x0+△x)-f(x0),若函数增量△y与自变量增量△x之比当△x→0时的极限存在且有限,就说函数f(x)在x0点可导,并将这个极限称之为f在x0点的导数或变化率.
“点动成线”:若函数f在区间I 的每一点都可导,便得到一个以I为定义域的新函数,记作 f(x)' 或y',称之为f的导函数,简称为导数.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询