高等代数---试题求解(00。三)

设V1与V2分别是齐次方程组x1+x2+.....+xn=0及x1=x2=.....=xn的解空间,求V1,V2并证P^n=V1+V2,其中P^n为数域p上的n维向量空间... 设V1与V2分别是齐次方程组x1+x2+.....+xn=0及x1=x2=.....=xn的解空间,求V1,V2并证P^n=V1+V2,其中P^n为数域p上的n维向量空间。 展开
mscheng19
2011-11-24 · TA获得超过1.3万个赞
知道大有可为答主
回答量:3835
采纳率:100%
帮助的人:2303万
展开全部
V1就是向量(1,1,...,1)的正交补空间,基为(1,-1,0,0,...,0),(1,0,-1,0,。。。,0),。。。,(1,0,。。。,-1),每个向量第一个分量为1,第k+1个分量为-1,其余分量为0,k=1,2,。。。,n-1。V2的基为(1,1,1,...,1)。容易看出,V1和V2是正交的(基向量之间是正交的),V1的维数是n-1,V2的维数是1,两者之和为n,因此两个子空间的和是直和,恰好是全空间。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式