xe^x/(1+e^x)^2dx不定积分
1个回答
展开全部
原式= -∫xd[1/(1+e^x)]
= -x/(1+e^x)+∫[1/(1+e^x)]dx
= -x/(1+e^x)+∫[(1+e^x-e^x)/(1+e^x)]dx
= -x/(1+e^x)+∫1dx-∫(1/(1+e^x))d(1+e^x)
=-x/(1+e^x)+x-ln(1+e^x)+C
= -x/(1+e^x)+∫[1/(1+e^x)]dx
= -x/(1+e^x)+∫[(1+e^x-e^x)/(1+e^x)]dx
= -x/(1+e^x)+∫1dx-∫(1/(1+e^x))d(1+e^x)
=-x/(1+e^x)+x-ln(1+e^x)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询