线性代数的一道题 详细的再加10分
在线性空间P3中,取两个基(I)e1=[1,0,1]T,e2=[1,1,0]T,e3=[0,1,1]T(II)e'1=[1,0,3]T,e'2=[2,2,2]T,e'3=...
在线性空间P3中,取两个基(I)e1=[1,0,1]T, e2=[1,1,0]T,e3=[0,1,1]T (II)e'1=[1,0,3]T,e'2=[2,2,2]T,e'3=[-1,1,4]T (1)求基(I)到基(II)的过渡矩阵 (2)设α在基(I)下坐标为[1,1,3],求α在(II)下的坐标
展开
1个回答
展开全部
解: (1) 基(I)到基(II)的过渡矩阵是 (e1,e2,e3)^-1(e'1,e'2,e'3)
(e1,e2,e3,e'1,e'2,e'3)=
1 1 0 1 2 -1
0 1 1 0 2 1
1 0 1 3 2 4
r3-r1
1 1 0 1 2 -1
0 1 1 0 2 1
0 -1 1 2 0 5
r1-r2,r3+r2
1 0 -1 1 0 -2
0 1 1 0 2 1
0 0 2 2 2 6
r3*(1/2),r1+r3,r2-r3
1 0 0 2 1 1
0 1 0 -1 1 -2
0 0 1 1 1 3
基(I)到基(II)的过渡矩阵 P=
2 1 1
-1 1 -2
1 1 3
(2) 求α在(II)下的坐标为 P^-1(1,1,3)^T
2 1 1 1
-1 1 -2 1
1 1 3 3
r1-2r3,r2+r3
0 -1 -5 -5
0 2 1 4
1 1 3 3
r2+2r1,r3+r1,r1*(-1)
0 1 5 5
0 0 -9 -6
1 0 -2 -2
r2*(-1/9),r1-4r2,r3+2r2
0 1 0 5/3
0 0 1 2/3
1 0 0 -2/3
交换行
1 0 0 -2/3
0 1 0 5/3
0 0 1 2/3
所以α在(II)下的坐标为 (-2/3,5/3,2/3)^T.
(e1,e2,e3,e'1,e'2,e'3)=
1 1 0 1 2 -1
0 1 1 0 2 1
1 0 1 3 2 4
r3-r1
1 1 0 1 2 -1
0 1 1 0 2 1
0 -1 1 2 0 5
r1-r2,r3+r2
1 0 -1 1 0 -2
0 1 1 0 2 1
0 0 2 2 2 6
r3*(1/2),r1+r3,r2-r3
1 0 0 2 1 1
0 1 0 -1 1 -2
0 0 1 1 1 3
基(I)到基(II)的过渡矩阵 P=
2 1 1
-1 1 -2
1 1 3
(2) 求α在(II)下的坐标为 P^-1(1,1,3)^T
2 1 1 1
-1 1 -2 1
1 1 3 3
r1-2r3,r2+r3
0 -1 -5 -5
0 2 1 4
1 1 3 3
r2+2r1,r3+r1,r1*(-1)
0 1 5 5
0 0 -9 -6
1 0 -2 -2
r2*(-1/9),r1-4r2,r3+2r2
0 1 0 5/3
0 0 1 2/3
1 0 0 -2/3
交换行
1 0 0 -2/3
0 1 0 5/3
0 0 1 2/3
所以α在(II)下的坐标为 (-2/3,5/3,2/3)^T.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询