设A为4*3的矩阵,η1η2η3是非齐次线性方程组AX=β的3个线性无关的解,k1k2为任意常数,则Ax=β的通解为?

答案是:1/2(η2+η3)+k1(η2-η1)+k2(η3-η1)为什么不能选:1/2(η2+η3)+k1(η2-η1)... 答案是:1/2(η2+η3)+k1(η2-η1)+k2(η3-η1)
为什么不能选:1/2(η2+η3)+k1(η2-η1)
展开
乱答一气
推荐于2017-10-02 · TA获得超过1.5万个赞
知道大有可为答主
回答量:4178
采纳率:100%
帮助的人:2159万
展开全部
η1η2η3是非齐次线性方程组AX=β的3个线性无关的解
说明存在k1,k1,k2使得
k1η1+k1η2+k2η3=0时
必须有k1=k2=k3=0
这就说明,AX=β的基础解系是2个,特解是1个
而1/2(η2+η3)+k1(η2-η1)只有一个基础解系,所以不是它的通解。
更多追问追答
追问
谢谢,我能理解k1=k2=k3=0.
但是为什么这样AX=0的基础解系就是2个了呢?
追答
A为4*3的矩阵,它的基础解系最多是2个
qsczsezlk0
2012-09-18
知道答主
回答量:2
采纳率:0%
帮助的人:3130
展开全部
你的问题是为什么不是一个基础解系,因为构成基础解系的条件是除了是齐次方程的解外,还要基础解系之间构成最大线性无关组,η2-η1不是最大线性无关向量,因为η2-η1和η3-η1也是线性无关,而η2-η1,η3-η1,η3-η2三个(或其他组合)可以表示为(η2-η1)-(η3-η1)+(η3-η2)=0。系数不全为0,线性相关,所以基础解系是2个,而且题目所列答案不是唯一的。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
某兔6119
2012-09-25 · TA获得超过152个赞
知道答主
回答量:138
采纳率:0%
帮助的人:60.9万
展开全部
r(A)≥1∴n-r(A)十1≤3 且已有η1η2η3,故n-r(A)十1≥3 ∴n-r(A)十1=3 故r(A)=1 n-r(A)=2 基础解系有2个
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式