若数列an的前几项和sn=2n的平方+n-1则a3+a4+a5+a6+a7
1个回答
展开全部
a1=s1=2*1^2+1-1=2
sn=2n^2+n-1
s(n-1)=2(n-1)^2+(n-1)-1
=2n^2-4n+2+n-1-1
=2n^2-3n
an=sn-s(n-1)
=2n^2+n-1-(2n^2-3n)
=2n^2+n-1-2n^2+3n
=3n-1
an是以-1为首项,公差为3的等差数列
a5=3*5-1=14
a3+a4+a5+a6+a7
=5a5
=5*14
=70
sn=2n^2+n-1
s(n-1)=2(n-1)^2+(n-1)-1
=2n^2-4n+2+n-1-1
=2n^2-3n
an=sn-s(n-1)
=2n^2+n-1-(2n^2-3n)
=2n^2+n-1-2n^2+3n
=3n-1
an是以-1为首项,公差为3的等差数列
a5=3*5-1=14
a3+a4+a5+a6+a7
=5a5
=5*14
=70
更多追问追答
追问
为什么是3n-1 不是4n-1?
追答
不好意思确实是4n-1
an=sn-s(n-1)
=2n^2+n-1-(2n^2-3n)
=2n^2+n-1-2n^2+3n
=4n-1
an是以-1为首项,公差为4的等差数列
a5=4*5-1=19
a3+a4+a5+a6+a7
=5a5
=5*19
=95
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询