如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰三角形ACD和三角...
如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰三角形ACD和三角形BCE,CA=CD,CB=CE,角ACD与角BCE都是锐角...
如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰三角形ACD和三角形BCE,CA=CD,CB=CE,角ACD与角BCE都是锐角,且角ACD=角BCE,连接AE交CD于点M.连接BD交CE于N,AE与BD交于点P,连接CP.
(1)请你判断三角形ACM与三角形DPM的形状有何关系并说明理由;
(2)求证:角APC=角BPC 展开
(1)请你判断三角形ACM与三角形DPM的形状有何关系并说明理由;
(2)求证:角APC=角BPC 展开
展开全部
(1)证明:∵∠ACD=∠BCE.
∴∠ACE=∠DCB;又AC=CD,CE=CB.
∴⊿ACE≌⊿DCB,∠CAE=∠CDB;又∠AMC=∠DMP.
∴⊿ACM∽⊿DPM.
(2)证明:∵ ⊿ACE≌⊿DCB.
∴点C到AE和DB距离相等.(对应边上的高相等)
∴∠APC=∠BPC.
∴∠ACE=∠DCB;又AC=CD,CE=CB.
∴⊿ACE≌⊿DCB,∠CAE=∠CDB;又∠AMC=∠DMP.
∴⊿ACM∽⊿DPM.
(2)证明:∵ ⊿ACE≌⊿DCB.
∴点C到AE和DB距离相等.(对应边上的高相等)
∴∠APC=∠BPC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∵△ACE≌△DCB,
∴∠CAE=∠CDB,
又∠AMC=∠DMP,
∴△ACM∽△DPM
ADPC共圆∠ADC=∠APC.
∠BEC=∠BPC.
∴∠ADC= (180°-∠ACD),
∠BEC= (180°-∠BCE).
∵∠ACD=∠BCE,
∴∠ADC=∠BEC,
∴∠APC=∠BPC.
∴∠CAE=∠CDB,
又∠AMC=∠DMP,
∴△ACM∽△DPM
ADPC共圆∠ADC=∠APC.
∠BEC=∠BPC.
∴∠ADC= (180°-∠ACD),
∠BEC= (180°-∠BCE).
∵∠ACD=∠BCE,
∴∠ADC=∠BEC,
∴∠APC=∠BPC.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询