设f(a)=2sin(π+a)cos(π-a)-cos(π+a)/1+sin^2a+cos(3π/2+a)-sin^2(π/2+a),且1+2sina≠0,化简f(a)
2个回答
展开全部
1. f(a)=[2sin( π+a)cos(π-a)-cos(π+a)]/[1+sin^2a+sin(π-a)-cos^2(π-a)]
=(2sinacosa+cosa)/(1+sin²a+sina-cos²a)
=cosa(2sina+1)/[sina(2sina+1)]
=cota
(1) a=-17π/6
f(a)=cot(-17π/6)=-cot(17π/6)=-cot(3π-π/6)
=cot(π/6)=√3
(2) 若a是锐角,且sin(a-3π/2)=3/5
即sin(3π/2-a)=-3/5
-cosa=-3/5 cosa=3/5
sina=√(1-cos²a)=4/5
所以f(a)=cota=cosa/sina=(3/5)/(4/5)=3/4
2. 已知sin&=3/5,&属于(π/2,π),tan&<0 cos&<0
则cos&=-√(1-cos²&)=-4/5
tan&=sin&/cos&=(3/5)/(-4/5)=-3/4
希望能帮到你O(∩_∩)O
=(2sinacosa+cosa)/(1+sin²a+sina-cos²a)
=cosa(2sina+1)/[sina(2sina+1)]
=cota
(1) a=-17π/6
f(a)=cot(-17π/6)=-cot(17π/6)=-cot(3π-π/6)
=cot(π/6)=√3
(2) 若a是锐角,且sin(a-3π/2)=3/5
即sin(3π/2-a)=-3/5
-cosa=-3/5 cosa=3/5
sina=√(1-cos²a)=4/5
所以f(a)=cota=cosa/sina=(3/5)/(4/5)=3/4
2. 已知sin&=3/5,&属于(π/2,π),tan&<0 cos&<0
则cos&=-√(1-cos²&)=-4/5
tan&=sin&/cos&=(3/5)/(-4/5)=-3/4
希望能帮到你O(∩_∩)O
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询