∫x/(x^2-x+1)dx用凑微分法怎么求?
3个回答
展开全部
x/(x^2-x+1) = (x -1/2) /(x^2-x+1) + (1/2) /(x^2-x+1)
∫(x -1/2) /(x^2-x+1) dx 凑微分, u = (x^2-x+1)
= (1/2)∫du / u = (1/2) lnu + C = (1/2) ln (x^2-x+1) + C
∫(1/2) /(x^2-x+1) dx = (1/2)∫dx / [(x-1/2)² + 3/4] 凑微分, v=(x-1/2)
= (1/2) ∫dv / (v² + 3/4) = (1/2) * (2 /√3) arctan(2v /√3) + C
= 1/√3 * arctan[(2x-1) /√3] + C
原式 = (1/2) ln (x^2-x+1) + (1 /√3) * arctan[(2x-1) /√3] + C
∫(x -1/2) /(x^2-x+1) dx 凑微分, u = (x^2-x+1)
= (1/2)∫du / u = (1/2) lnu + C = (1/2) ln (x^2-x+1) + C
∫(1/2) /(x^2-x+1) dx = (1/2)∫dx / [(x-1/2)² + 3/4] 凑微分, v=(x-1/2)
= (1/2) ∫dv / (v² + 3/4) = (1/2) * (2 /√3) arctan(2v /√3) + C
= 1/√3 * arctan[(2x-1) /√3] + C
原式 = (1/2) ln (x^2-x+1) + (1 /√3) * arctan[(2x-1) /√3] + C
展开全部
分母配方,换元t=x-1/2,则原式=∫(t+1/2)/(t^2+3/4)dt=∫t/(t^2+3/4)dt+1/2×∫1/(t^2+3/4)dt。
后者套用公式∫dx/(x^2+a^2)=1/a×arctan(x/a)+C得1/√3×arctan(2t/√3)+C
前者化为1/2×∫(2t)/(t^2+3/4)dt=1/2×∫1/(t^2+3/4)d(t^2+3/4)=1/2×ln((t^2+3/4)+C
所以,原式=1/2×ln((t^2+3/4)+1/√3×arctan(2t/√3)+C=1/2×ln((x^2-x+1)+1/√3×arctan((2x-1)/√3)+C
后者套用公式∫dx/(x^2+a^2)=1/a×arctan(x/a)+C得1/√3×arctan(2t/√3)+C
前者化为1/2×∫(2t)/(t^2+3/4)dt=1/2×∫1/(t^2+3/4)d(t^2+3/4)=1/2×ln((t^2+3/4)+C
所以,原式=1/2×ln((t^2+3/4)+1/√3×arctan(2t/√3)+C=1/2×ln((x^2-x+1)+1/√3×arctan((2x-1)/√3)+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫x/(x^2-x+1)dx=∫x+1+1/xdx=x^2/2+x+lnx+c
追问
求详细过程
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询