如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合).连接DP交对角线AC于E,连接BE.

(1)说明角APD=角CBE;(2)试问P点运动到什么位置时,三角形ADP的面积等于菱形ABCD面积的1/4?为什么?... (1)说明角APD=角CBE;
(2)试问P点运动到什么位置时,三角形ADP的面积等于菱形ABCD面积的1/4?为什么?
展开
百度网友d022871
2011-11-27 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1767
采纳率:50%
帮助的人:1798万
展开全部
证明:(1)∵四边形ABCD是菱形
∴BC=CD,AC平分∠BCD(2分)
∵CE=CE
∴△BCE≌△DCE(4分)
∴∠EBC=∠EDC
又∵AB∥DC
∴∠APD=∠CDP(5分)
∴∠EBC=∠APD(6分)

(2)当P点运动到AB边的中点时,S△ADP= 1/4S菱形ABCD.(8分)
连接DB
∵∠DAB=60°,AD=AB
∴△ABD等边三角形(9分)
∵P是AB边的中点
∴DP⊥AB(10分)
∴S△ADP= 12AP•DP,S菱形ABCD=AB•DP(11分)
∵AP= 12AB
∴S△ADP= 12× 12AB•DP= 1/4S菱形ABCD
即△ADP的面积等于菱形ABCD面积的 1/4.(12分)

分析:(1)可先证△BCE≌△DCE得到∠EBC=∠EDC,再根据AB∥DC即可得到结论.
(2)当P点运动到AB边的中点时,S△ADP= 1/4S菱形ABCD,证明S△ADP= 12× 12AB•DP= 1/4S菱形ABCD即可.
shadow_ali
2012-12-25 · TA获得超过292个赞
知道答主
回答量:17
采纳率:0%
帮助的人:7.5万
展开全部

证明:(1)∵四边形ABCD是菱形
∴BC=CD,AC平分∠BCD(2分)
∵CE=CE
∴△BCE≌△DCE(4分)
∴∠EBC=∠EDC
又∵AB∥DC
∴∠APD=∠CDP(5分)
∴∠EBC=∠APD(6分)

(2)当P点运动到AB边的中点时,S△ADP= 1/4S菱形ABCD.(8分)
连接DB
∵∠DAB=60°,AD=AB
∴△ABD等边三角形(9分)
∵P是AB边的中点
∴DP⊥AB(10分)
∴S△ADP= 12AP•DP,S菱形ABCD=AB•DP(11分)
∵AP= 12AB
∴S△ADP= 12× 12AB•DP= 1/4S菱形ABCD
即△ADP的面积等于菱形ABCD面积的 1/4.(12分)

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
电热壶1127
2012-04-27 · TA获得超过505个赞
知道答主
回答量:135
采纳率:0%
帮助的人:36.7万
展开全部
第二问麻烦
连接BD
因为AB=AD
∠DAB=90°
△DAB为等边三角形
根据三线合一,则△ADP的面积等于菱形ABCD面积的 1/4.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式