
已知椭圆C的方程为x^2/4+y^2/3=1,P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交椭圆C于另
1个回答
展开全部
设A(x0,y0)B(x0,-y0)
PB:x=[-(x0-4)/y0]y+4
代入椭圆利用韦达定理点E:y=3y0/(2x0-5),x=(5x0-8)/(2x0-5)
直线AE:y-3y0/(2x0-5)=y0/(x0-1)[x-(5x0-8)/(2x0-5)]
化简:y=y0/(x0-1)(x-1)
点Q:(1,0)
PB:x=[-(x0-4)/y0]y+4
代入椭圆利用韦达定理点E:y=3y0/(2x0-5),x=(5x0-8)/(2x0-5)
直线AE:y-3y0/(2x0-5)=y0/(x0-1)[x-(5x0-8)/(2x0-5)]
化简:y=y0/(x0-1)(x-1)
点Q:(1,0)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询