设u=f(x,z)而z(x,y)是由方程z=x yP(z)所确定的函数,求du
1个回答
展开全部
dz=d[xyP(z)]=yP(z)dx+xP(z)dy+xyP'(z)dz
所以 dz=[ yP(z)dx+xP(z)dy] / [1- xyP'(z)]
du=df(x,z) = f'x(x,z)dx+ f'z(x,z)dz
= f'x(x,z)dx+ f'z(x,z)*{ [ yP(z)dx+xP(z)dy] })/ [1- xyP'(z)]
={ f'x(x,z) + f'z(x,z)*yP(z)/ [1- xyP'(z)] } dx+{ f'z(x,z)*xP(z) / [1- xyP'(z)] }dy
所以 dz=[ yP(z)dx+xP(z)dy] / [1- xyP'(z)]
du=df(x,z) = f'x(x,z)dx+ f'z(x,z)dz
= f'x(x,z)dx+ f'z(x,z)*{ [ yP(z)dx+xP(z)dy] })/ [1- xyP'(z)]
={ f'x(x,z) + f'z(x,z)*yP(z)/ [1- xyP'(z)] } dx+{ f'z(x,z)*xP(z) / [1- xyP'(z)] }dy
追问
设u=f(x,z)而z(x,y)是由方程z=x +yP(z)所确定的函数,求du谢谢了
追答
不是求好了吗
du由两部分组成{ f'x(x,z) + f'z(x,z)*yP(z)/ [1- xyP'(z)] } dx
和{ f'z(x,z)*xP(z) / [1- xyP'(z)] }dy
x 和y 是两个自变量呀
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询