如图,有一座抛物线形的拱桥,当水位涨到AB时,水面的宽度为14米,但如果水位再升4米时,就达到警戒水位CD
如图,有一座抛物线形的拱桥,当水位涨到AB时,水面的宽度为14米,但如果水位再升4米时,就达到警戒水位CD,这时水面的宽度为10m(1)建立如图所示的直角坐标系,求出抛物...
如图,有一座抛物线形的拱桥,当水位涨到AB时,水面的宽度为14米,但如果水位再升4米时,就达到警戒水位CD,这时水面的宽度为10m
(1)建立如图所示的直角坐标系,求出抛物线的解析式
(2)某日上午7时,洪水已涨至警戒水位,并继续以0.5米每小时的速度上升,有一艘小船,船露出水面部分是矩形,且高为1.5米,长为2米,问小船在几时前能按加全通过拱桥的桥洞. 展开
(1)建立如图所示的直角坐标系,求出抛物线的解析式
(2)某日上午7时,洪水已涨至警戒水位,并继续以0.5米每小时的速度上升,有一艘小船,船露出水面部分是矩形,且高为1.5米,长为2米,问小船在几时前能按加全通过拱桥的桥洞. 展开
3个回答
展开全部
解:1.点A,B关于对称轴对称,AB=14,又A在y轴上,则对称轴为直线x=7
∵顶点在x轴上,则顶点坐标(7,0)。
设抛物线的解析式为y=a(x-7)^2, 点A(0,m),
∵水位再升4米时,就达到警戒水位CD,CD=10,∴C (2, m+4)
抛物线经过点A,C
∴ m=49a
m+4=25a
解得a=-1/6
m=-49/6
解析式为y=-1/6(x-7)^2
2、
小船上部宽EF=2M米(E在F左边),小船从正中间通过时,点E横坐标为7-1=6.
当x=6时,y==-1/6(6-7)^2=-1/3 ∴E(6,-1/3 )
由(1)知点C(2,-25/6)
∴小船吃水线与警戒线CD的距离是25/6-1.5-1/3=7/2=3.5米
3.5/0.5=5小时 7+5=12
答:小船在中午12时前能安全通过拱桥的桥洞.
希望对你有帮助
∵顶点在x轴上,则顶点坐标(7,0)。
设抛物线的解析式为y=a(x-7)^2, 点A(0,m),
∵水位再升4米时,就达到警戒水位CD,CD=10,∴C (2, m+4)
抛物线经过点A,C
∴ m=49a
m+4=25a
解得a=-1/6
m=-49/6
解析式为y=-1/6(x-7)^2
2、
小船上部宽EF=2M米(E在F左边),小船从正中间通过时,点E横坐标为7-1=6.
当x=6时,y==-1/6(6-7)^2=-1/3 ∴E(6,-1/3 )
由(1)知点C(2,-25/6)
∴小船吃水线与警戒线CD的距离是25/6-1.5-1/3=7/2=3.5米
3.5/0.5=5小时 7+5=12
答:小船在中午12时前能安全通过拱桥的桥洞.
希望对你有帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
只会第一问...点A,B关于对称轴对称,AB=14,又A在y轴上,则对称轴为直线x=7
∵顶点在x轴上,则顶点坐标(7,0)。
设抛物线的解析式为y=a(x-7)^2, 点A(0,m),
∵水位再升4米时,就达到警戒水位CD,CD=10,∴C (2, m+4)
抛物线经过点A,C
∴ m=49a
m+4=25a
解得a=-1/6
m=-49/6
解析式为y=-1/6(x-7)^2
∵顶点在x轴上,则顶点坐标(7,0)。
设抛物线的解析式为y=a(x-7)^2, 点A(0,m),
∵水位再升4米时,就达到警戒水位CD,CD=10,∴C (2, m+4)
抛物线经过点A,C
∴ m=49a
m+4=25a
解得a=-1/6
m=-49/6
解析式为y=-1/6(x-7)^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询