高数不等式证明题
当x>0时,证明e^x-1-x>1-cosx求导求错了都,应该是-sinx还有导数怎么大于零的需要证明...
当x>0时,证明e^x-1-x>1-cosx
求导求错了都,应该是-sinx 还有导数怎么大于零的需要证明 展开
求导求错了都,应该是-sinx 还有导数怎么大于零的需要证明 展开
3个回答
展开全部
f(x)=e^x-1-x-1+cosx
f'=e^x-1+sinx
x>0时,f'(x)>0
f(x)在x>0时递增,所以:f(x)>f(0)=e^0-1-0-1+cos0=0
f(x)>0
e^x-1-x-1+cosx>0
即:当x>0时,证明e^x-1-x>1-cosx
f'=e^x-1+sinx
x>0时,f'(x)>0
f(x)在x>0时递增,所以:f(x)>f(0)=e^0-1-0-1+cos0=0
f(x)>0
e^x-1-x-1+cosx>0
即:当x>0时,证明e^x-1-x>1-cosx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cosx<e^(-x)+x 令f(x)=cosx; g(x)=e^(-x)+x 任取0<x<1,f'(x)<0 ∴f(x)在(0,1)内单调递减任取0<x<1,g'(x)=1-e^(-x)>
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询