设函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2

函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.(I)求a、... 函数f(x)=x3+2ax2+bx+a,g(x)=x2-3x+2,其中x∈R,a、b为常数,已知曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
(I) 求a、b的值,并写出切线l的方程;
(II)若方程f(x)+g(x)=mx有三个互不相同的实根0、x1、x2,其中x1<x2,且对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,求实数m的取值范围.
展开
百度网友8b96c90
2011-11-28 · 超过17用户采纳过TA的回答
知道答主
回答量:30
采纳率:0%
帮助的人:69.9万
展开全部
解:(I) f'(x)=3x2+4ax+b,g'(x)=2x-3.
由于曲线y=f(x)与y=g(x)在点(2,0)处有相同的切线l.
故有f(2)=g(2)=0,f'(2)=g'(2)=1.
由此得 {8+8a+2b+a=012+8a+b=1,解得 {a=-2b=5,
所以a=-2,b=5..切线的方程为x-y-2=0.
(II)由(I)得f(x)=x3-4x2+5x-2,所以f(x)+g(x)=x3-3x2+2x.
依题意,方程x(x2-3x+2-m)=0,有三个互不相等的实根0,x1,x2,
故x1,x2是x2-3x+2-m=0的两相异实根.
所以△=9-4(2-m)>0,解得m>- 14.
又对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,
特别地取x=x1时,f(x1)+g(x1)<m(x1-1)成立,得m<0.
由韦达定理得x1+x2=3>0,x1x2=2-m>0.故0<x1<x2.
对任意的x∈[x1,x2],x-x2≤0,x-x1≥0,x>0.
则f(x)+g(x)-mx=x(x-x1)(x-x2)≤0,又f(x1)+g(x1)-mx1=0.
所以f(x)+g(x)-mx在x∈[x1,x2]上的最大值为0.
于是当m<0,对任意的x∈[x1,x2],f(x)+g(x)<m(x-1)恒成立,
综上得:实数m的取值范围是(- 14,0).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式