AB=AC ∠A=20° ∠ACD=20° ∠ABE=30° 求:∠CDE的度数

若无解则证明... 若无解则证明 展开
慕野清流
2011-11-28 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2255万
展开全部
解:因为AB=AC,∠A=20°,所以,∠ABC=∠ACB=(180°-20°)/2=80°.
所以,∠CBE=50°.又∠BEC=∠A+∠ABE=20°+30°=50°,
所以,∠CBE=∠BEC,所以,BC=CE.
以CB为一边在形内作∠BCF=20°,CF交AB于点F,连结EF,则∠ECF=60°,
∠BCF=180°-∠FBC-∠BCF=80°,
所以,CF=BC=CE.
所以,三角形CEF是等边三角形,所以,EF=CF,∠EFC=60°.
所以,∠DFE=180°-∠BFC-∠CFE=180°-80°-60°=40°.
又因为∠DCF=∠ACB-∠ACD-∠BCF=80°-20°-20°=40°,
∠FDC=∠A+∠ACD=20°+20°=40°,
所以,∠DCF=∠FDC,
所以,FD=CF=EF.
所以,∠FDE=(180°-∠DFE)/2=(180°-40°)/2=70°.
又在三角形BCD中,∠BDC=180°-∠DBC-∠BCD=180°-80°-60°=40°,
所以,∠CDE=∠FDE-∠BDC=70°-40°=30°
信峰哥上本科
2011-11-28
知道答主
回答量:1
采纳率:0%
帮助的人:1668
展开全部
解:因为AB=AC,∠A=20°,所以,∠ABC=∠ACB=(180°-20°)/2=80°.
所以,∠CBE=50°.又∠BEC=∠A+∠ABE=20°+30°=50°,
所以,∠CBE=∠BEC,所以,BC=CE.
以CB为一边在形内作∠BCF=20°,CF交AB于点F,连结EF,则∠ECF=60°,
∠BFC=180°-∠FBC-∠BCF=80°,
所以,CF=BC=CE.
所以,三角形CEF是等边三角形,所以,EF=CF,∠EFC=60°.
所以,∠DFE=180°-∠BFC-∠CFE=180°-80°-60°=40°.
又因为∠DCF=∠ACB-∠ACD-∠BCF=80°-20°-20°=40°,
∠FDC=∠A+∠ACD=20°+20°=40°,
所以,∠DCF=∠FDC,
所以,FD=CF=EF.
所以,∠FDE=(180°-∠DFE)/2=(180°-40°)/2=70°.
又在三角形BCD中,∠BDC=180°-∠DBC-∠BCD=180°-80°-60°=40°,
所以,∠CDE=∠FDE-∠BDC=70°-40°=30°.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式