∫(0,π)1/(2+cosx)dx

 我来答
fin3574
高粉答主

2011-11-29 · 你好啊,我是fin3574,請多多指教
fin3574
采纳数:21378 获赞数:134581

向TA提问 私信TA
展开全部
令u=tan(x/2) => dx=2du/(1+u²),cosx=(1-u²)/(1+u²)
当x=0,u=0 // 当x=π,u=+∞
原式= ∫[0,+∞] 1/[2+(1-u²)/(1+u²)] * 2/(1+u²) du
= ∫[0,+∞] (1+u²)/(u²+3) * 2/(1+u²) du
= 2∫[0,+∞] 1/(u²+3) du
= (2/√3)arctan(u/√3)[0,+∞]
= (2/√3)lim(u->+∞) arctan(u/√3) - 0
= (2/√3)(π/2)
= π/√3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式