∫(0,π)1/(2+cosx)dx
1个回答
展开全部
令u=tan(x/2) => dx=2du/(1+u²),cosx=(1-u²)/(1+u²)
当x=0,u=0 // 当x=π,u=+∞
原式= ∫[0,+∞] 1/[2+(1-u²)/(1+u²)] * 2/(1+u²) du
= ∫[0,+∞] (1+u²)/(u²+3) * 2/(1+u²) du
= 2∫[0,+∞] 1/(u²+3) du
= (2/√3)arctan(u/√3)[0,+∞]
= (2/√3)lim(u->+∞) arctan(u/√3) - 0
= (2/√3)(π/2)
= π/√3
当x=0,u=0 // 当x=π,u=+∞
原式= ∫[0,+∞] 1/[2+(1-u²)/(1+u²)] * 2/(1+u²) du
= ∫[0,+∞] (1+u²)/(u²+3) * 2/(1+u²) du
= 2∫[0,+∞] 1/(u²+3) du
= (2/√3)arctan(u/√3)[0,+∞]
= (2/√3)lim(u->+∞) arctan(u/√3) - 0
= (2/√3)(π/2)
= π/√3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |