全微分z=(x^2+y^2)e^[(x^2+y^2)/xy] 最后有过程,可以的话偏导数是多少也说一下?
1个回答
展开全部
记:z = f(x,y) = (x^2+y^2)e^[(x^2+y^2)/xy] = u(x,y) e^[u(x,y)/v(x,y)]
其中: u(x,y) = (x^2+y^2);
v(x,y) = xy;
全微分: dz = df(x,y) = [∂f(x,y)/∂x] dx + [∂f(x,y)/∂y] dy
∂f(x,y)/∂x = ∂u(x,y)/∂x e^(u/v) + u e^(u/v) ∂(u/v)/∂x
∂f(x,y)/∂y = ∂u(x,y)/∂y e^(u/v) + u e^(u/v) ∂(u/v)/∂y
∂f(x,y)/∂x = e^[(x^2+y^2)/xy] [2x + (x^2+y^2) (2x-(x^2+y^2))/(x^2y)]
∂f(x,y)/∂y = e^[(x^2+y^2)/xy] [2y + (x^2+y^2) (2y-(x^2+y^2))/(xy^2)]
这是 z对x,y的两个偏导数。
z的全微分:
dz = df(x,y) = e^[(x^2+y^2)/xy] {[2x + (x^2+y^2) (2x-(x^2+y^2))/(x^2y)] dx +
+ [2y + (x^2+y^2) (2y-(x^2+y^2))/(xy^2)] dy }
其中: u(x,y) = (x^2+y^2);
v(x,y) = xy;
全微分: dz = df(x,y) = [∂f(x,y)/∂x] dx + [∂f(x,y)/∂y] dy
∂f(x,y)/∂x = ∂u(x,y)/∂x e^(u/v) + u e^(u/v) ∂(u/v)/∂x
∂f(x,y)/∂y = ∂u(x,y)/∂y e^(u/v) + u e^(u/v) ∂(u/v)/∂y
∂f(x,y)/∂x = e^[(x^2+y^2)/xy] [2x + (x^2+y^2) (2x-(x^2+y^2))/(x^2y)]
∂f(x,y)/∂y = e^[(x^2+y^2)/xy] [2y + (x^2+y^2) (2y-(x^2+y^2))/(xy^2)]
这是 z对x,y的两个偏导数。
z的全微分:
dz = df(x,y) = e^[(x^2+y^2)/xy] {[2x + (x^2+y^2) (2x-(x^2+y^2))/(x^2y)] dx +
+ [2y + (x^2+y^2) (2y-(x^2+y^2))/(xy^2)] dy }
追问
∂f(x,y)/∂x = e^[(x^2+y^2)/xy] [2x + (x^2+y^2) (2x-(x^2+y^2))/(x^2y)]
∂f(x,y)/∂y = e^[(x^2+y^2)/xy] [2y + (x^2+y^2) (2y-(x^2+y^2))/(xy^2)]
不应该是
∂f(x,y)/∂x = e^[(x^2+y^2)/xy] [2x + (x^2+y^2) (2x^2-(x^2+y^2))/(x^2y)] 吗?
∂f(x,y)/∂y = e^[(x^2+y^2)/xy] [2y + (x^2+y^2) (2y^2-(x^2+y^2))/(xy^2)]
追答
我检查了一下,您说的对,应该是:
∂f(x,y)/∂x = e^[(x^2+y^2)/xy] [2x + (x^4 - y^4)/(x^2y)]
∂f(x,y)/∂y = e^[(x^2+y^2)/xy] [2y + (y^4 - x^4)/(xy^2)]
dz = e^[(x^2+y^2)/xy] {[2x + (x^4 - y^4)/(x^2y)] dx + [2y + (y^4 - x^4)/(xy^2)] dy }
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询