高中数学必修四三角函数的重点知识点

jy520607
2011-12-12
知道答主
回答量:2
采纳率:0%
帮助的人:3058
展开全部
一、角的概念和弧度制:
(1)在直角坐标系内讨论角:
角的顶点在原点,始边在 轴的正半轴上,角的终边在第几象限,就说过角是第几象限的角。若角的终边在坐标轴上,就说这个角不属于任何象限,它叫象限界角。
(2)①与 角终边相同的角的集合:

与 角终边在同一条直线上的角的集合: ;
与 角终边关于 轴对称的角的集合: ;
与 角终边关于 轴对称的角的集合: ;
与 角终边关于 轴对称的角的集合: ;
②一些特殊角集合的表示
终边在坐标轴上角的集合: ;
终边在一、三象限的平分线上角的集合: ;
终边在二、四象限的平分线上角的集合: ;
终边在四个象限的平分线上角的集合: ;
(3)区间角的表示:
①象限角:第一象限角 ;第三象限角: ;
第一、三象限角: ;
②写出图中所表示的区间角:

(4)正确理解角:
“第一象限的角”= ;“锐角”= ;
“小于 的角”= ;
(5)由 的终边所在的象限, 来判断 所在的象限

(6)弧度制:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零;任一
已知角 的弧度数的绝对值 ,其中 为以角 作为圆心角时所对圆弧的长, 为圆的半径。注意钟表指针所转过的角是负角。
(7)弧长公式: ;半径公式: ;
扇形面积公式: ;周长公式
二、任意角的三角函数:
(1)任意角的三角函数定义:
以角 的顶点为坐标原点,始边为 轴正半轴建立直角坐标系,在角 的终边上任取一个异于原点的点 ,点 到原点的距离记为 ,
则 ; ;
如:角 的终边上一点 ,则 。注意r>0
(2)在图中画出角 的正弦线、余弦线、正切线;

(3)特殊角的三角函数值:

0

sin

cos

三、同角三角函数的关系与诱导公式:
(1)同角三角函数的关系

作用:已知某角的一个三角函数值,求它的其余各三角函数值。
(2)诱导公式:
: , , ;
: , , ;
: , , ;
: , , ;
: , , ;
: , , ;
: , , ;
: , , ;
: , , ;
诱导公式可用概括为:
奇变偶不变,符号看象限
(3)同角三角函数的关系与诱导公式的运用:
①已知某角的一个三角函数值,求它的其余各三角函数值。
②求任意角的三角函数值。
步骤:

如 ,则 , ;

注意:巧用勾股数求三角函数值可提高解题速度:(3,4,5);(6,8,10);(5,12,13);(8,15,17);
wzcqyfwjh
2011-11-30 · TA获得超过1180个赞
知道答主
回答量:141
采纳率:0%
帮助的人:52.6万
展开全部
要会证诱导公式,并且很好利用,以及六大含义
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友9f6f026b4
2011-11-30 · TA获得超过328个赞
知道答主
回答量:31
采纳率:0%
帮助的人:5.4万
展开全部
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA•CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a • tan(π/3+a)• tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
tan(π/2+α)= -cotα
cot(π/2+α)= -tanα
sin(π/2-α)= cosα
cos(π/2-α)= sinα
tan(π/2-α)= cotα
cot(π/2-α)= tanα
sin(3π/2+α)= -cosα
cos(3π/2+α)= sinα
tan(3π/2+α)= -cotα
cot(3π/2+α)= -tanα
sin(3π/2-α)= -cosα
cos(3π/2-α)= -sinα
tan(3π/2-α)= cotα
cot(3π/2-α)= tanα
(以上k∈Z)
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友1ce1a22
2013-10-06 · TA获得超过2149个赞
知道小有建树答主
回答量:2325
采纳率:75%
帮助的人:190万
展开全部
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
S星岭预感
2012-12-05
知道答主
回答量:35
采纳率:0%
帮助的人:3.8万
展开全部
看书
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式