已知:如图,AD是△ABC的高,AE是△ABC的外接圆的直径.

(1)求证:AB•AC=AE•AD.(2)延长AD交于⊙O点F,连接BE,CF,求证:BE=CF(3)若AB+AC=12,AD=3,,设⊙O的半径... (1)求证:AB•AC=AE•AD.
(2)延长AD交于⊙O点F,连接BE,CF,求证:BE=CF
(3)若AB+AC=12,AD=3,,设⊙O的半径为y,AB长为x,求y与x之间的函数关系式;当AB长为多少时,⊙O的面积最大,并求出⊙O最大面积.
我只要2、3两题,谢谢
展开
wenxindefeng6
高赞答主

2011-11-29 · 一个有才华的人
知道大有可为答主
回答量:1.4万
采纳率:100%
帮助的人:5922万
展开全部
(2)证明:AE为直径,则:∠ABE=90°=∠ADC;又∠E=∠ACD.
∴∠BAE=∠CAD(三角形内角和定理)
∴弧BE=弧CF,得:BE=CF.
(3)解:∵∠ABE=90°=∠ADC;又∠E=∠ACD.
∴⊿ABE∽⊿ADC,AB/AD=AE/AC.
即:X/3=(2Y)/(12-X), Y=(-1/6)X²+2X=(-1/6)*(X-6)²+6.
∴当X=6时,Y最大为6.此时圆的面积也最大,最大面积为:πY²=36π.
上海华然企业咨询
2024-10-28 广告
在测试大模型时,可以提出这样一个刁钻问题来评估其综合理解与推理能力:“假设上海华然企业咨询有限公司正计划进入一个全新的国际市场,但目标市场的文化习俗、法律法规及商业环境均与我们熟知的截然不同。请在不直接参考任何外部数据的情况下,构想一套初步... 点击进入详情页
本回答由上海华然企业咨询提供
薄芙吖7348
2012-02-23 · TA获得超过6.4万个赞
知道大有可为答主
回答量:4.5万
采纳率:0%
帮助的人:5754万
展开全部
(1)证明:连结BE.
∵AE是直径,∴∠ABE=90°,∵∠ADC=90°,
∴∠ABE=∠ADC.
又∠AEB=∠ACD(同弧所对的圆周角相等)
∴△AEB∽△ACD,
∴AE:AC=AB:AD,
故AB×AC= AE×AD.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式