﹙x+2﹚/﹙x+1﹚-﹙x+3﹚/﹙x+2﹚=﹙x+4﹚/﹙x+3﹚-﹙x+5﹚/﹙x+4﹚详细简便!!!!!!
2个回答
展开全部
先看其中的一项
(x+2)/(x+1)=[(x+1)+1]/(x+1)=(x+1)/(x+1)+1/(x+1)=1+1/(x+1)
其余一样
1+1/(x+1)-1-1/(x+2)=1+1/(x+3)-1/(x+4)
1/(x+1)-1/(x+2)=1/(x+3)-1/(x+4)
[(x+2)-(x+1)]/(x+1)(x+2)=[(x+4)-(x+3)]/(x+3)(x+4)
1/(x+1)(x+2)=1/(x+3)(x+4)
(x+3)(x+4)=(x+1)(x+2)
x²+7x+12=x²+3x+2
4x=-10
x=-5/2
检验:
(x+2)/(x+1)=[(x+1)+1]/(x+1)=(x+1)/(x+1)+1/(x+1)=1+1/(x+1)
其余一样
1+1/(x+1)-1-1/(x+2)=1+1/(x+3)-1/(x+4)
1/(x+1)-1/(x+2)=1/(x+3)-1/(x+4)
[(x+2)-(x+1)]/(x+1)(x+2)=[(x+4)-(x+3)]/(x+3)(x+4)
1/(x+1)(x+2)=1/(x+3)(x+4)
(x+3)(x+4)=(x+1)(x+2)
x²+7x+12=x²+3x+2
4x=-10
x=-5/2
检验:
展开全部
(x+2) / (x+1) = [(x+1)+1] / (x+1) = 1 + 1 / (x+1)
﹙x+2﹚/﹙x+1﹚-﹙x+3﹚/﹙x+2﹚=﹙x+4﹚/﹙x+3﹚-﹙x+5﹚/﹙x+4﹚
==> 1 + 1/(x+1) - 1 - 1/(x+2) = 1 + 1/(x+3) - 1 - 1/(x+4)
==> 1/(x+1) - 1/(x+2) = 1/(x+3) - 1/(x+4)
==> 1/[(x+1)(x+2)] = 1/[(x+3)(x+4)]
==>(x+1)(x+2)=(x+3)(x+4)
==>x²+3x+2=x²+7x+12
==>x=-5/2
希望我的回答会对你有帮助
﹙x+2﹚/﹙x+1﹚-﹙x+3﹚/﹙x+2﹚=﹙x+4﹚/﹙x+3﹚-﹙x+5﹚/﹙x+4﹚
==> 1 + 1/(x+1) - 1 - 1/(x+2) = 1 + 1/(x+3) - 1 - 1/(x+4)
==> 1/(x+1) - 1/(x+2) = 1/(x+3) - 1/(x+4)
==> 1/[(x+1)(x+2)] = 1/[(x+3)(x+4)]
==>(x+1)(x+2)=(x+3)(x+4)
==>x²+3x+2=x²+7x+12
==>x=-5/2
希望我的回答会对你有帮助
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询