在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F. (1)在图1中证明CE=CF
在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),求∠BDG的...
在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),求∠BDG的度数; 展开
(1)在图1中证明CE=CF;
(2)若∠ABC=90°,G是EF的中点(如图2),求∠BDG的度数; 展开
4个回答
展开全部
因为是平行四边形,所以∠F=∠BAE,∠DAF=∠AEB
又因为AF是角平分线
所以∠BAE=∠DAF
所以∠F=∠AEB
又因为∠CEF=∠AEB
所以∠F=∠CEF
所以CE=CF
(2)因为AF是角平分线
∠ABC=90°
平行四边形
所以BE=AB
又因AB=CD
所以BE=CD
连接CG,BG
因为EFG是等腰直角三角形
所以CG=GE
又因∠GCD=∠GEB=135°
CD=BE
所以△BEG≌△DCG
所以BG=CD
又因∠CGD+∠EGD=90°
∠CGD=∠EGB
所以∠EGB+∠EGD=90°
所以∠BGD=90°
又因BG=GD
所以△BGD是等腰直角三角形
所以∠BDG=45°
自已打得,不容易,符号太难打了,要给分啊
又因为AF是角平分线
所以∠BAE=∠DAF
所以∠F=∠AEB
又因为∠CEF=∠AEB
所以∠F=∠CEF
所以CE=CF
(2)因为AF是角平分线
∠ABC=90°
平行四边形
所以BE=AB
又因AB=CD
所以BE=CD
连接CG,BG
因为EFG是等腰直角三角形
所以CG=GE
又因∠GCD=∠GEB=135°
CD=BE
所以△BEG≌△DCG
所以BG=CD
又因∠CGD+∠EGD=90°
∠CGD=∠EGB
所以∠EGB+∠EGD=90°
所以∠BGD=90°
又因BG=GD
所以△BGD是等腰直角三角形
所以∠BDG=45°
自已打得,不容易,符号太难打了,要给分啊
展开全部
证明:(1)如图1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)过G作GM⊥BC于M,GN⊥CF于N,连BG
G为EF中点,所以MGNC为正方形,
BM=DN
GM=GN
所以△BGM≌△DGN
所以BG=DG,∠BDG=90
∠BDG=45
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)过G作GM⊥BC于M,GN⊥CF于N,连BG
G为EF中点,所以MGNC为正方形,
BM=DN
GM=GN
所以△BGM≌△DGN
所以BG=DG,∠BDG=90
∠BDG=45
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)证明:如图,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵EG=CG∠BEG=∠DCGBE=DC,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGE+∠DGE=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:连接GC、BG,
∵四边形ABCD为平行四边形,∠ABC=90°,
∴四边形ABCD为矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF为等腰直角三角形,
∵G为EF中点,
∴EG=CG=FG,CG⊥EF,
∵△ABE为等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG与△DCG中,
∵EG=CG∠BEG=∠DCGBE=DC,
∴△BEG≌△DCG,
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGE+∠DGE=90°,
∴△DGB为等腰直角三角形,
∴∠BDG=45°,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
因为是平行四边形,所以∠F=∠BAE,∠DAF=∠AEB
又因为AF是角平分线
所以∠BAE=∠DAF
所以∠F=∠AEB
又因为∠CEF=∠AEB
所以∠F=∠CEF
所以CE=CF
(2)因为AF是角平分线
∠ABC=90°
平行四边形
所以BE=AB
又因AB=CD
所以BE=CD
连接CG,BG
因为EFG是等腰直角三角形
所以CG=GE
又因∠GCD=∠GEB=135°
CD=BE
所以△BEG≌△DCG
所以BG=CD
又因∠CGD+∠EGD=90°
∠CGD=∠EGB
所以∠EGB+∠EGD=90°
所以∠BGD=90°
又因BG=GD
所以△BGD是等腰直角三角形
所以∠BDG=45°
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询