如图,从一张直径是2的圆形铁皮中剪下一个圆心角为90°的扇形,求这个扇形的面积
展开全部
解答:
1、连接BC,∵∠A=90°,∴BC就是直径,
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=√2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π。
2、延长AO,交圆于D点,
设弧BC与AD相交于E点,则AE=√2,
以ED为直径作圆F,设圆F的半径=r,
则:√2+2r=2,∴r=½﹙2-√2﹚,
∴圆F周长=2πr=﹙2-√2﹚π≈0.59π,
而弧BC=¼×2π×AB=¼×2π×√2=√2π/2≈0.7π,
∴圆F周长<弧BC长,
∴不能围成。
3、设圆O半径=R,则AB=√2R,
∴弧BC长=¼×2π×√2R=√2πR/2,
圆F周长=2πr,
∴√2R+2r=2R,
解得:r=﹙2-√2﹚R/2,
∴只要圆F周长≥弧BC长,就能围成,
∴2π×﹙2-√2﹚R/2≥√2πR/2,
∴只要4≥3√2就行,
但4<3√2,
∴不可能围成。
1、连接BC,∵∠A=90°,∴BC就是直径,
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=√2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π。
2、延长AO,交圆于D点,
设弧BC与AD相交于E点,则AE=√2,
以ED为直径作圆F,设圆F的半径=r,
则:√2+2r=2,∴r=½﹙2-√2﹚,
∴圆F周长=2πr=﹙2-√2﹚π≈0.59π,
而弧BC=¼×2π×AB=¼×2π×√2=√2π/2≈0.7π,
∴圆F周长<弧BC长,
∴不能围成。
3、设圆O半径=R,则AB=√2R,
∴弧BC长=¼×2π×√2R=√2πR/2,
圆F周长=2πr,
∴√2R+2r=2R,
解得:r=﹙2-√2﹚R/2,
∴只要圆F周长≥弧BC长,就能围成,
∴2π×﹙2-√2﹚R/2≥√2πR/2,
∴只要4≥3√2就行,
但4<3√2,
∴不可能围成。
武义菲亚伏电子有限公司
2023-06-12 广告
2023-06-12 广告
绝缘子的爬距是指沿着绝缘子表面,两个导电部件之间的最短距离。爬距通常用爬电比距(P-Δ)来表示,其中P是电压,Δ是电势差(即两个导电部件之间的电势差),它可以用来描述绝缘子的绝缘性能。一般来说,爬距越小,绝缘子的绝缘性能就越好。同时,绝缘子...
点击进入详情页
本回答由武义菲亚伏电子有限公司提供
展开全部
连接BC,∵∠A=90°,∴BC就是直径,
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=√2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π。
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=√2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BC,∵∠A=90°,∴BC就是直径,
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=√2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=√2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∠BAC=90°,
∴∠BOC=180,
∴点B、O、C在一条直线上
∴BC=圆形铁片直径=2m
∴根据勾股定理AB=AC=√2m
∴扇形的半径为√2m
∴扇形的面积为(πr²)/4=√2/2πm²
∴∠BOC=180,
∴点B、O、C在一条直线上
∴BC=圆形铁片直径=2m
∴根据勾股定理AB=AC=√2m
∴扇形的半径为√2m
∴扇形的面积为(πr²)/4=√2/2πm²
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
连接BC,∵∠A=90°,∴BC就是园O的直径
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=AC根号1+根号1=根号2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π
∴O点是BC中点,∴△ABC是等腰直角△,
∵BC=2,∴由勾股定理得:
扇形半径AB=AC根号1+根号1=根号2,∠BAC=90°,
∴扇形面积S=¼×π﹙√2﹚²=½π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询