
已知P(x,y)是椭圆x^2/144+y^2/25=1上的点,求x+y的取值范围.
展开全部
x^2/144+y^2/25=1
25x^2+144y^2=3600
x+y=t,y=t-x
(25+144)x^2-288tx+144t^2-3600=0
判别式(-288t)^2-4*(25+144)*(144t^2-3600)>=0
144t^2-169*(t^2-25)>=0
25t^2-169*25<=0
t^2-169<=0
-13 <=t<= 13
25x^2+144y^2=3600
x+y=t,y=t-x
(25+144)x^2-288tx+144t^2-3600=0
判别式(-288t)^2-4*(25+144)*(144t^2-3600)>=0
144t^2-169*(t^2-25)>=0
25t^2-169*25<=0
t^2-169<=0
-13 <=t<= 13
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询