关于月球的知识(月球的起源,地质构造,月貌,月相,月食,潮汐,人类
5个回答
展开全部
月球
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。 第六阶段:月球的现状 月球经历了45亿年的演化,现今已成为一个内部能源近于枯竭、内部活动近于停滞的僵死的天体,仅有极其微弱的月震活动。小天体的撞击和巨大的温差是月球表面最主要的地质营力,它使岩石机械碎裂、月壤层增厚、地形缓慢夷平。现今月球的表面是一个无大气、无水、干燥、无声、无生命活动的死寂的世界。[15]
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。 第六阶段:月球的现状 月球经历了45亿年的演化,现今已成为一个内部能源近于枯竭、内部活动近于停滞的僵死的天体,仅有极其微弱的月震活动。小天体的撞击和巨大的温差是月球表面最主要的地质营力,它使岩石机械碎裂、月壤层增厚、地形缓慢夷平。现今月球的表面是一个无大气、无水、干燥、无声、无生命活动的死寂的世界。[15]
东莞市润德澳环保科技有限公司
2019-10-26 广告
2019-10-26 广告
其原理是在高于溶液渗透压的作用下,依据其他物质不能透过半透膜而将这些物质和水分离开来。由于反渗透膜的膜孔径非常小(仅为10A左右),因此能够有效地去除水中的溶解盐类、胶体、微生物、有机物等(去除率高达97-98%)。系统具有水质好、耗能低、...
点击进入详情页
本回答由东莞市润德澳环保科技有限公司提供
展开全部
月球
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
月球
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。 第六阶段:月球的现状 月球经历了45亿年的演化,现今已成为一个内部能源近于枯竭、内部活动近于停滞的僵死的天体,仅有极其微弱的月震活动。小天体的撞击和巨大的温差是月球表面最主要的地质营力,它使岩石机械碎裂、月壤层增厚、地形缓慢夷平。现今月球的表面是一个无大气、无水、干燥、无声、无生命活动的死寂的世界。
月球地质学的主要研究领域及成果是:
(1)月球地貌分区:根据月面的地貌特征,可分为高地(月陆)、月海和火山地貌。月海和月陆覆盖月面80%的面积。月面22个月海绝大多数分布在月球正面,如风暴洋、雨海、静海、澄海、丰富海等,是39亿年前大量小天体撞击月面而形成的,月海周边的山脉为撞击溅射物堆积形成。月陆的年龄老于月海。月球是一个无大气、无水体、无生命活动、冷热剧变的死寂世界,仅有太阳辐射引起月岩的物理崩解和各类小天体撞击产生的溅射物的撒播。月表覆盖着一层粒径<1mm的松散的岩石碎屑、玻璃碎块及少量陨石物质与粉尘组成的厚度为数厘米至数十厘米的月壤。月壤形成年龄为200~500Ma。
(2)月球地质史分期与构造特征:根据地层覆盖、侵入穿插和撞击坑的密度,将月球的地质史分期从老到新划分为:前雨海纪(保留最古老的月陆及古撞击坑残迹)、雨海纪(大型撞击形成大量月海)、风暴洋纪或月海纪(大面积玄武岩喷发形成月海玄武岩)、爱拉托逊纪或后月海纪(辐射纹消失的撞击坑)及哥白尼纪(最近形成的具有辐射纹的撞击坑)。月面构造主要由月陆与月海组成。月陆包括广阔的大陆区、由山链构成的边缘隆起带、内陆边缘盆地(类月海)和大环形构造(亚类月海);月海包括巨型月海盆地、月海盆地边缘带和小月海盆地。月陆内有多条近南北向的隆起带;巨大的环形盆地有明显的放射状断裂体系。月球上的褶皱变形主要是月海盆地内的堤形隆起所形成。
(3)月壤与月岩:月表覆盖着一层月壤,是由长期陨石及微陨石撞击及其溅射物堆积所形成的岩石碎屑、粉未、角砾、冲击熔融玻璃及火山玻璃组成的土壤层。月球的岩石主要有三种类型:①高地斜长岩;②月海玄武岩;③富含KREEP的岩石,常为苏长岩,可能由富斜长石的岩石部分熔融所形成。
(4)月球内部结构:根据天然月震和大型陨石撞击月表产生月震的记录,证明月球内部具有壳层状结构。正面月壳的厚度约50km,背面厚约72km;月球岩石圈的厚度至少可延伸到1000km的深度。根据月球内部电导剖面的研究表明,月球金属核的半径约360km;根据月球磁场的测定,月核半径约400~500km;月球内部最高温度不超过1300℃,没有达到物质熔融的温度。
(5)月球的地质演化:月球曾产生过多次局部熔融,月球形成初期,月球的大部分曾加热到1000℃。距今41亿年前,月球产生过第一次规模较大的岩浆活动,通过岩浆分离作用,形成了斜长岩月壳。距今40亿年前,月壳局部重熔,形成非月海玄武岩。根据月球捕获成因说,地-月距离的变化使月球旋转扁率变化,产生南北向压力,形成月球上的X型断裂。距今39亿年,小天体的大规模撞击月球,形成月海盆地,即雨海事件。距今39~31亿年,月球产生过第二次大规模岩浆活动,月海玄武岩喷发,月海被玄武岩充填的次序为雨海西、雨海东、湿海、危海、静海、丰富海、澄海、风暴洋。31亿年以来,月球的地质演化处于停滞状态,距今20亿年前,月球曾受过一次重大的加热事件。相继形成爱拉托逊式辐射撞击坑及哥白尼式辐射撞击坑。在各类小天体不断撞击和太阳辐射作用下,形成覆盖月面的月壤。
尽管对月球的观测与研究作过大量工作,21世纪的研究领域可归纳为:
(1)月球成因,不论分裂说、双星说或捕获说,都难以圆满解释月球的基本特征与演化规律。
(2)月球早期演化史,特别是距今41亿年前,月球的物质分布与分异、能量来源与分配、地质知识程与特征。
(3)月球内部结构,各圈层的物质组成、温度分布、月岩剩磁成因、质量瘤成因等。
(4)月球三类主要岩石类型的成因联系。
(5)月表海、陆分布的起因。
(6)地-月形成和演化的共性与特性,月球演化对地球早期演化的对比研究等。
月球表面的环境,与地球表面的自然环境大不相同。月球上没有大气,处于一种高度的真空状态,连声音都无法传播。月球上也没有水,就是在对月球的岩石分析中,也没有发现水分。那里满目荒凉,毫无生气,是一个没有生命活动的世界。月球上没有大气层,月面直接暴露在宇宙空间。因而月表的温度变化非常剧烈。白天最热时,月表温度可达127℃;夜间最冷时,温度则可降到——183℃。
没有大气,又没有水,月球上也就没有云雾雨雪等气象变化。因此,在地球上用望远镜观察月球,可以清楚地看到月表的各种形态。
满月时,在地球上用肉眼乍看月球,是一个洁白光亮的圆面。仔细观看,则会看到在明亮的月面上有许多黑色的斑纹。通过望远镜观察月球时,会清楚地看到月球表面的显著特征:有些区域明亮,有些区域暗黑,大大小小的亮区和暗区交错布满月球表面。早在几百年前,人们就已从望远镜中观察到了月球表面的这种特征。当时,人们以为那些大的暗区是月球上的海、洋,小的暗区则被当作是月球上的湖、湾,并以此给予命名。这些名称,直到今天还继续沿用。后来人们才知道,月球上的海洋和湖湾,与地球上的海洋和湖湾是完全不同的,那里根本连一滴水都没有。月球上的暗区(即所谓的海、洋、湖、湾),实际上是一些面积大小不同的平原和低地。由于那些地方广泛分布着熔岩流形成的比较年轻的岩石,又比较低洼,对太阳光的反射率较低,同周围地区相比,呈现为暗黑色。而月表那些亮区,则是月球上的高原和山脉。其组成物质主要是比较古老的岩石,对太阳光的反射能力很强,相比之下显得非常明亮。“阿波罗”号系列飞船在月球上实地考察的结果,证明这种对月面明暗区域的解释,是完全正确的。
在地球上看月球,只能看到月球的半个球面,而这半个球面基本上是月球的同一个半球的表面。这个总是朝向地球的半个月球面,叫做月球的正面。月球的另一个半球面,总是背着地球,叫做月球的背面。在地球上,人们是无法直接观察月球背面的。自从1959年月球探测器拍摄了月球背面的照片以后,人们才开始对那里的月面特征有所了解。绕着月球飞行的宇航员,则直接地看到了月球背面的景象。
在月球的正面,高原、山脉与平原、低地,差不多各占面积的一半。月球的背面,也分布着高原、山脉和“海”。与正面不同的是,背面的高原、山脉占据的区域非常广阔,而被称作海、洋的平原、低地,所占面积则比较小。
从整个月球表面看,月海约占总面积的20%。现在已经知道的月海有22个。在月球的正面,较大的月海有10个。其中,位于西部的有危海、丰富海、澄海、静海和酒海;位于东部的有风暴洋、湿海、雨海、云海和汽海。分布在月球背面的月海,主要有理想海、南海、史密斯海、边区海、莫斯科海、浪海、洪堡德海、齐奥尔科夫斯基海等。月海中最大的是风暴洋,其面积达500万平方千米。月海的周围被山脉所环绕,大多呈封闭的圆形。
月球上的山脉,大多是用地球上的山脉名称来命名的。如亚平宁山脉、阿尔卑斯山脉、高加索山脉等。比较高大的山脉有十多条。其中,最长的是亚平宁山脉,其长度达1000千米。位于月球南极附近的莱布尼兹山,是月球上的最高峰,其高度达9000米,比地球上的最高峰还要高。
环形山广泛的分布,这是月球表面最突出的特征。月球表面的环形山,又叫做月坑。月坑近似于圆形,与地球上的火山口地形很相似。环形山的中间,地势低平,有的还分布着小的山峰。环形山的内侧比较陡峭,外侧较平缓。有些环形山的周围,向外辐射出许多明亮的条纹。月球上的环形山,大多是用著名天文学家的名字来命名的,如哥白尼、开普勒、牛顿、柏拉图、第谷、祖冲之、张衡等环形山。
在月球上到处可以看到环形山。无论是月球正面,还是月球背面,无论在明亮的高原,还是在低平的月海,都有环形山分布。环形山的数量非常多,总数达5万多个。环形山的大小差别很大。较大的环形山直径达100千米以上,小的直径则在1千米以下。在月球的正面,直径超过1千米的环形山,就有33 000个以上。其中,直径超过100千米的约有40个。南极附近的贝利环形山,直径达295千米,是月球上最大的环形山。月球正面的第谷、哥白尼、开普勒等环形山,周围都有很明显的辐射条纹。特别是位于南半球的第谷环形山,周围的辐射条纹最为壮观,数量多达100多条。其中最长的一条长达1800千米,一直延伸到北半球的澄海。在地球上,即使用最普通的望远镜,也能清晰地观察到那些较大的辐射条纹。
月面大部分地方的地势是平缓的,没有参差不齐的山峰和尖锐的岩石。在月球的表面,普遍覆盖着一层厚薄不一的碎屑物质。一般来说,高原、高山区碎屑覆盖物较厚,达1千米之多;而月海区域碎屑物较薄,多在1米左右。覆盖物主要是碎石,上面是浮土。
关于月球表面形态结构的形成原因,科学家们进行了多方面的研究。虽然目前尚无完全肯定的结论,但普遍认为,塑造月球表面形态的主要因素是:小型宇宙天体物质(小行星、彗星、流星等)冲击、熔岩喷发,以及剧烈的温度变化、太阳风的不断冲击等。科学家们通过对月球土、石样品以及其他资料的分析研究,描绘出了月球发展演化过程的大体轮廓,即:月球诞生的时间与地球一样,大约在46亿年前。月球诞生后,熔融的表面很快生成一层薄薄的外壳。随着较重元素向月心方向聚集下沉,外壳层逐渐加厚。经过化学分异后的外壳层,被大的陨星或彗星轰击,在月球表面形成了巨大的盆地。随着时间推移,外来天体物质对月球表面的轰击逐渐减少。被熔岩流填充的许多大盆地,即形成了现在的月海。小岩石块对月球表面的缓慢而不间断的剥蚀,一直持续到现在。科学家们认为,巨大的环形盆地——月海,是由小行星、彗星以及比月球小的卫星(在太阳系早期阶段,曾围绕地球转动的较小卫星)轰击月面而造成的。例如,月球正面的雨海,科学家们认为是被一颗直径为96千米的小行星撞击以后形成的。这些小行星等天体对月球表面的轰击,经历了相当长的时期。在39亿至40亿年前,是月球表面遭受轰击最剧烈的时期。在漫长的时期内,大量陨星对月球的撞击,形成了数量繁多的月坑。被轰击的过程中,月球表层物质在水平和垂直方向,进行了重新分与和组合。熔岩逐渐在一些盆地淤积,形成了月海;轰击时产生的大量溅射物,抛落到月面各处。各种物质的撞击过程,使月面受到了不断的磨损和剥蚀。
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。 第六阶段:月球的现状 月球经历了45亿年的演化,现今已成为一个内部能源近于枯竭、内部活动近于停滞的僵死的天体,仅有极其微弱的月震活动。小天体的撞击和巨大的温差是月球表面最主要的地质营力,它使岩石机械碎裂、月壤层增厚、地形缓慢夷平。现今月球的表面是一个无大气、无水、干燥、无声、无生命活动的死寂的世界。
月球地质学的主要研究领域及成果是:
(1)月球地貌分区:根据月面的地貌特征,可分为高地(月陆)、月海和火山地貌。月海和月陆覆盖月面80%的面积。月面22个月海绝大多数分布在月球正面,如风暴洋、雨海、静海、澄海、丰富海等,是39亿年前大量小天体撞击月面而形成的,月海周边的山脉为撞击溅射物堆积形成。月陆的年龄老于月海。月球是一个无大气、无水体、无生命活动、冷热剧变的死寂世界,仅有太阳辐射引起月岩的物理崩解和各类小天体撞击产生的溅射物的撒播。月表覆盖着一层粒径<1mm的松散的岩石碎屑、玻璃碎块及少量陨石物质与粉尘组成的厚度为数厘米至数十厘米的月壤。月壤形成年龄为200~500Ma。
(2)月球地质史分期与构造特征:根据地层覆盖、侵入穿插和撞击坑的密度,将月球的地质史分期从老到新划分为:前雨海纪(保留最古老的月陆及古撞击坑残迹)、雨海纪(大型撞击形成大量月海)、风暴洋纪或月海纪(大面积玄武岩喷发形成月海玄武岩)、爱拉托逊纪或后月海纪(辐射纹消失的撞击坑)及哥白尼纪(最近形成的具有辐射纹的撞击坑)。月面构造主要由月陆与月海组成。月陆包括广阔的大陆区、由山链构成的边缘隆起带、内陆边缘盆地(类月海)和大环形构造(亚类月海);月海包括巨型月海盆地、月海盆地边缘带和小月海盆地。月陆内有多条近南北向的隆起带;巨大的环形盆地有明显的放射状断裂体系。月球上的褶皱变形主要是月海盆地内的堤形隆起所形成。
(3)月壤与月岩:月表覆盖着一层月壤,是由长期陨石及微陨石撞击及其溅射物堆积所形成的岩石碎屑、粉未、角砾、冲击熔融玻璃及火山玻璃组成的土壤层。月球的岩石主要有三种类型:①高地斜长岩;②月海玄武岩;③富含KREEP的岩石,常为苏长岩,可能由富斜长石的岩石部分熔融所形成。
(4)月球内部结构:根据天然月震和大型陨石撞击月表产生月震的记录,证明月球内部具有壳层状结构。正面月壳的厚度约50km,背面厚约72km;月球岩石圈的厚度至少可延伸到1000km的深度。根据月球内部电导剖面的研究表明,月球金属核的半径约360km;根据月球磁场的测定,月核半径约400~500km;月球内部最高温度不超过1300℃,没有达到物质熔融的温度。
(5)月球的地质演化:月球曾产生过多次局部熔融,月球形成初期,月球的大部分曾加热到1000℃。距今41亿年前,月球产生过第一次规模较大的岩浆活动,通过岩浆分离作用,形成了斜长岩月壳。距今40亿年前,月壳局部重熔,形成非月海玄武岩。根据月球捕获成因说,地-月距离的变化使月球旋转扁率变化,产生南北向压力,形成月球上的X型断裂。距今39亿年,小天体的大规模撞击月球,形成月海盆地,即雨海事件。距今39~31亿年,月球产生过第二次大规模岩浆活动,月海玄武岩喷发,月海被玄武岩充填的次序为雨海西、雨海东、湿海、危海、静海、丰富海、澄海、风暴洋。31亿年以来,月球的地质演化处于停滞状态,距今20亿年前,月球曾受过一次重大的加热事件。相继形成爱拉托逊式辐射撞击坑及哥白尼式辐射撞击坑。在各类小天体不断撞击和太阳辐射作用下,形成覆盖月面的月壤。
尽管对月球的观测与研究作过大量工作,21世纪的研究领域可归纳为:
(1)月球成因,不论分裂说、双星说或捕获说,都难以圆满解释月球的基本特征与演化规律。
(2)月球早期演化史,特别是距今41亿年前,月球的物质分布与分异、能量来源与分配、地质知识程与特征。
(3)月球内部结构,各圈层的物质组成、温度分布、月岩剩磁成因、质量瘤成因等。
(4)月球三类主要岩石类型的成因联系。
(5)月表海、陆分布的起因。
(6)地-月形成和演化的共性与特性,月球演化对地球早期演化的对比研究等。
月球表面的环境,与地球表面的自然环境大不相同。月球上没有大气,处于一种高度的真空状态,连声音都无法传播。月球上也没有水,就是在对月球的岩石分析中,也没有发现水分。那里满目荒凉,毫无生气,是一个没有生命活动的世界。月球上没有大气层,月面直接暴露在宇宙空间。因而月表的温度变化非常剧烈。白天最热时,月表温度可达127℃;夜间最冷时,温度则可降到——183℃。
没有大气,又没有水,月球上也就没有云雾雨雪等气象变化。因此,在地球上用望远镜观察月球,可以清楚地看到月表的各种形态。
满月时,在地球上用肉眼乍看月球,是一个洁白光亮的圆面。仔细观看,则会看到在明亮的月面上有许多黑色的斑纹。通过望远镜观察月球时,会清楚地看到月球表面的显著特征:有些区域明亮,有些区域暗黑,大大小小的亮区和暗区交错布满月球表面。早在几百年前,人们就已从望远镜中观察到了月球表面的这种特征。当时,人们以为那些大的暗区是月球上的海、洋,小的暗区则被当作是月球上的湖、湾,并以此给予命名。这些名称,直到今天还继续沿用。后来人们才知道,月球上的海洋和湖湾,与地球上的海洋和湖湾是完全不同的,那里根本连一滴水都没有。月球上的暗区(即所谓的海、洋、湖、湾),实际上是一些面积大小不同的平原和低地。由于那些地方广泛分布着熔岩流形成的比较年轻的岩石,又比较低洼,对太阳光的反射率较低,同周围地区相比,呈现为暗黑色。而月表那些亮区,则是月球上的高原和山脉。其组成物质主要是比较古老的岩石,对太阳光的反射能力很强,相比之下显得非常明亮。“阿波罗”号系列飞船在月球上实地考察的结果,证明这种对月面明暗区域的解释,是完全正确的。
在地球上看月球,只能看到月球的半个球面,而这半个球面基本上是月球的同一个半球的表面。这个总是朝向地球的半个月球面,叫做月球的正面。月球的另一个半球面,总是背着地球,叫做月球的背面。在地球上,人们是无法直接观察月球背面的。自从1959年月球探测器拍摄了月球背面的照片以后,人们才开始对那里的月面特征有所了解。绕着月球飞行的宇航员,则直接地看到了月球背面的景象。
在月球的正面,高原、山脉与平原、低地,差不多各占面积的一半。月球的背面,也分布着高原、山脉和“海”。与正面不同的是,背面的高原、山脉占据的区域非常广阔,而被称作海、洋的平原、低地,所占面积则比较小。
从整个月球表面看,月海约占总面积的20%。现在已经知道的月海有22个。在月球的正面,较大的月海有10个。其中,位于西部的有危海、丰富海、澄海、静海和酒海;位于东部的有风暴洋、湿海、雨海、云海和汽海。分布在月球背面的月海,主要有理想海、南海、史密斯海、边区海、莫斯科海、浪海、洪堡德海、齐奥尔科夫斯基海等。月海中最大的是风暴洋,其面积达500万平方千米。月海的周围被山脉所环绕,大多呈封闭的圆形。
月球上的山脉,大多是用地球上的山脉名称来命名的。如亚平宁山脉、阿尔卑斯山脉、高加索山脉等。比较高大的山脉有十多条。其中,最长的是亚平宁山脉,其长度达1000千米。位于月球南极附近的莱布尼兹山,是月球上的最高峰,其高度达9000米,比地球上的最高峰还要高。
环形山广泛的分布,这是月球表面最突出的特征。月球表面的环形山,又叫做月坑。月坑近似于圆形,与地球上的火山口地形很相似。环形山的中间,地势低平,有的还分布着小的山峰。环形山的内侧比较陡峭,外侧较平缓。有些环形山的周围,向外辐射出许多明亮的条纹。月球上的环形山,大多是用著名天文学家的名字来命名的,如哥白尼、开普勒、牛顿、柏拉图、第谷、祖冲之、张衡等环形山。
在月球上到处可以看到环形山。无论是月球正面,还是月球背面,无论在明亮的高原,还是在低平的月海,都有环形山分布。环形山的数量非常多,总数达5万多个。环形山的大小差别很大。较大的环形山直径达100千米以上,小的直径则在1千米以下。在月球的正面,直径超过1千米的环形山,就有33 000个以上。其中,直径超过100千米的约有40个。南极附近的贝利环形山,直径达295千米,是月球上最大的环形山。月球正面的第谷、哥白尼、开普勒等环形山,周围都有很明显的辐射条纹。特别是位于南半球的第谷环形山,周围的辐射条纹最为壮观,数量多达100多条。其中最长的一条长达1800千米,一直延伸到北半球的澄海。在地球上,即使用最普通的望远镜,也能清晰地观察到那些较大的辐射条纹。
月面大部分地方的地势是平缓的,没有参差不齐的山峰和尖锐的岩石。在月球的表面,普遍覆盖着一层厚薄不一的碎屑物质。一般来说,高原、高山区碎屑覆盖物较厚,达1千米之多;而月海区域碎屑物较薄,多在1米左右。覆盖物主要是碎石,上面是浮土。
关于月球表面形态结构的形成原因,科学家们进行了多方面的研究。虽然目前尚无完全肯定的结论,但普遍认为,塑造月球表面形态的主要因素是:小型宇宙天体物质(小行星、彗星、流星等)冲击、熔岩喷发,以及剧烈的温度变化、太阳风的不断冲击等。科学家们通过对月球土、石样品以及其他资料的分析研究,描绘出了月球发展演化过程的大体轮廓,即:月球诞生的时间与地球一样,大约在46亿年前。月球诞生后,熔融的表面很快生成一层薄薄的外壳。随着较重元素向月心方向聚集下沉,外壳层逐渐加厚。经过化学分异后的外壳层,被大的陨星或彗星轰击,在月球表面形成了巨大的盆地。随着时间推移,外来天体物质对月球表面的轰击逐渐减少。被熔岩流填充的许多大盆地,即形成了现在的月海。小岩石块对月球表面的缓慢而不间断的剥蚀,一直持续到现在。科学家们认为,巨大的环形盆地——月海,是由小行星、彗星以及比月球小的卫星(在太阳系早期阶段,曾围绕地球转动的较小卫星)轰击月面而造成的。例如,月球正面的雨海,科学家们认为是被一颗直径为96千米的小行星撞击以后形成的。这些小行星等天体对月球表面的轰击,经历了相当长的时期。在39亿至40亿年前,是月球表面遭受轰击最剧烈的时期。在漫长的时期内,大量陨星对月球的撞击,形成了数量繁多的月坑。被轰击的过程中,月球表层物质在水平和垂直方向,进行了重新分与和组合。熔岩逐渐在一些盆地淤积,形成了月海;轰击时产生的大量溅射物,抛落到月面各处。各种物质的撞击过程,使月面受到了不断的磨损和剥蚀。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
月球也称太阴。是地球唯一的天然卫星。月球是最明显的天然卫星的例子。在太阳系里,除水星和金星外,其他行星都有天然卫星。月球的年龄大约有46亿年。月球有壳、幔、核等分层结构。最外层的月壳平均厚度约为60-65公里。月壳下面到1000公里深度是月幔,它占了月球的大部分体积。月幔下面是月核,月核的温度约为1000度,很可能是熔融状态的。月球直径约3476公里,是地球的3/11,太阳的1/400。月球的体积只有地球的1/49,质量约7350亿亿吨,相当于地球质量的1/81,月球表面的重力差不多是地球重力的1/6。
月球表面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。
月球的正面永远都是向着地球,其原因是潮汐长期作用的结果。另外一面,除了在月面边沿附近的区域因天秤动而中间可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。月球背面的一大特色是几乎没有月海这种较暗的月面特征。而当人造探测器运行至月球背面时,它将无法与地球直接通讯。
月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。
相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。
因为月球的自转周期和它的公转周期是完全一样的,地球上只能看见月球永远用同一面向着地球。自月球形成早期,地球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。
月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。
严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。
很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星。
月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持着5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+ 5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。
白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食。
月球背面的结构和正面差异较大。月海所占面积较少,而环形山则较多。地形凹凸不平,起伏悬殊最长和最短的月球半径都位于背面,有的地方比月球平均半径长4公里,有的地方则短5公里(如范德格拉夫洼地)。背面未发现“质量瘤”。背面的月壳比正面厚,最厚处达150公里,而正面月壳厚度只有60公里左右。
月球本身并不发光,只反射太阳光。月球亮度随日、月间角距离和地、月间距离的改变而变化。平均亮度为太阳亮度的1/465000,亮度变化幅度从1/630000至1/375000。满月时亮度平均为 -12.7等(见)。它给大地的照度平均为0.22勒克斯,相当于100瓦电灯在距离21米处的照度。月面不是一个良好的反光体,它的平均反照率只有7%,其余93%均被月球吸收。月海的反照率更低,约为 6%。月面高地和环形山的反照率为17%,看上去山地比月海明亮。月球的亮度随而变化,下表[]以满月亮度为100,列出不同月龄时的亮度值。从中可以看出,满月时的亮度比上下弦要大十多倍。
由于月球上没有大气,再加上月面物质的热容量和导热率又很低,因而月球表面昼夜的温差很大。白天,在阳光垂直照射的地方温度高达+127℃;夜晚,温度可降低到-183℃。这些数值,只表示月球表面的温度。用射电观测可以测定月面土壤中的温度,这种测量表明,月面土壤中较深处的温度很少变化,这正是由于月面物质导热率低造成的。
从月震波的传播了解到月球也有壳、幔、核等分层结构。最外层的月壳厚60~65公里。月壳下面到1,000公里深度是月幔,占了月球大部分体积。月幔下面是月核。月核的温度约1,000℃,很可能是熔融的,据推测大概是由Fe-Ni-S和榴辉岩物质构成。
月球运动
月球是距离地球最近的天体,它与地球的平均距离约为384401千米。它的平均直径约为3476千米,比地球直径的1/4稍大些。月球的表面积有3800万平方千米,还不如我们亚洲的面积大。月球的质量约7350亿亿吨,相当于地球质量的1/81,月面重力则差不多相当于地球重力的1/6。
月球的轨道运动
月球以椭圆轨道绕地球运转。这个轨道平面在天球上截得的大圆称“白道”。白道平面不重合于天赤道,也不平行于黄道面,而且空间位置不断变化。周期173日。月球轨道(白道)对地球轨道(黄道)的平均倾角为5°09′。
月球的自转
月球在绕地球公转的同时进行自转,周期27.32166日,正好是一个恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普遍规律。一般认为是行星对卫星长期潮汐作用的结果。天平动是一个很奇妙的现象,它使得我们得以看到59%的月面。主要有以下原因:
1、在椭圆轨道的不同部分,自转速度与公转角速度不匹配。
2、白道与赤道的交角。
[天秤动
由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为天秤动。又由于月球轨道倾斜于地球赤道,因此月球在星空中移动时,极区会作约7度的晃动,这种现象称为天秤动。再者,由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。这种现象称为天秤动。
[编辑本段]月食
月食是一种特殊的天文现象,指当月球运行至地球的阴影部分时,太阳,月球,地球,行成一条直线,太阳光被月球遮住,所以每当农历15日前后可能就会出现月食。
也就是说,此时的太阳、地球、月球恰好 (或几乎) 在同一条直线,因此从太阳照射到月球的光线,会被地球所掩盖。
以地球而言,当月食发生的时候,太阳和月球的方向会相差 180 度,所以月食必定发生在“望”(即农历15日前后)。要注意的是,由于太阳和月球在天空的轨道 (称为黄道和白道) 并不在同一个平面上,而是有约 5 度的交角,所以只有太阳和月球分别位于黄道和白道的两个交点附近,才有机会连成一条直线,产生月食。
月食分类
月食可分为月偏食、月全食及半影月食三种。当月球只有部分进入地球的本影时,就会出现月偏食;而当整个月球进入地球的本影之时,就会出现月全食。至于半影月食,是指月球只是掠过地球的半影区,造成月面亮度极轻微的减弱,很难用肉眼看出差别,因此不为人们所注意。
地球的直径大约是月球的4倍,在月球轨道处,地球的本影的直径仍相当于月球的2.5倍。所以当地球和月亮的中心大致在同一条直线上,月亮就会完全进入地球的本影,而产生月全食。而如果月球始终只有部分为地球本影遮住时,即只有部分月亮进入地球的本影,就发生月偏食。月球上并不会出现月环食。因为,月球的体积比地球小的多。
太阳的直径比地球的直径大得多,地球的影子可以分为本影和半影。如果月球进入半影区域,太阳的光也可以被遮掩掉一些,这种现象在天文上称为半影月食。由于在半影区阳光仍十分强烈,月面的光度只是极轻微减弱,多数情况下半影月食不容易用肉眼分辨。一般情况下,由于较不易为人发现,故不称为月食,所以月食只有月全食和月偏食两种。
另外由于地球的本影比月球大得多,这也意味着在发生月全食时,月球会完全进入地球的本影区内,所以不会出现月环蚀这种现象。
每年发生月食数一般为2次,最多发生3次,有时一次也不发生。因为在一般情况下,月亮不是从地球本影的上方通过,就是在下方离去,很少穿过或部分通过地球本影,所以一般情况下就不会发生月食。
据观测资料统计,每世纪中半影月食,月偏食、月全食所发生的百分比约为36.60%,34.46%和28.94%。
月球的构造
据猜想,月球可能是空心的。月球是冰行星,在与地球擦过时被地球吸引力,有了轨道。在探测月球时,发现月球表面有一部分是重金属,那一部分的密度比地球大(所以月球只以一面对着地球),然而行星的核是重金属组成的。刚才提到月球是冰行星,在被地球吸引时,表面开裂,水倾斜而出,导致地球的“诺亚洪水”,后来月核填补了此开裂,月球从此无核。再有,月球的平均密度比地球小,说明月球内部有大量空气存在。但这一理论有待深入考察。
[编辑本段]月球地形
环形山
环形山这个名字是伽利略起的。是月面的显着特征,几乎布满了整个月面。 最大的环形山是南极附近的贝利环形山,直径295千米,比海南岛还大一点。小的环形山甚至可能是一个几十厘米的坑洞。直径不小于1000米的大约有33000个。占月面表面积的 7-10%。
有个日本学者1969年提出一个环形山分类法,分为克拉维型(古老的环形山,一般都面目全非,有的还山中有山)哥白尼型(年轻的环形山,常有“辐射纹”,内壁一般带有同心圆状的段丘,中央一般有中央峰)阿基米德形(环壁较低,可能从哥白尼型演变而来 )碗型和酒窝型(小型环形山,有的直径不到一米)。
月海
在地球上的人类用肉眼所见月面上的阴暗部分实际上是月面上的广阔平原。由于历史上的原因,这个名不副实的名称保留下来。
已确定的月海有22个,此外还有些地形称为“月海”或“类月海”的。公认的22个绝大多数分布在月球正面。背面有3个,4个在边缘地区。在正面的月海面积略大于50%,其中最大的“风暴洋” 面积约五百万平方公里,差不多九个法国的面积总和。 大多数月海大致呈圆形,椭圆形,且四周多为一些山脉封闭住,但也有一些海是连成一片的。除了“海”以外,还有五个地形与之类似的“湖”——梦湖、死湖、夏湖、秋湖、春湖,但有的湖比海还大,比如梦湖面积7万平方千米,比汽海等还大得多。 月海伸向陆地的部分称为“湾”和“沼”,都分布在正面。湾有五个:露湾、暑湾、中央湾、虹湾、眉月湾;沼有腐沼、疫沼、梦沼三个,其实沼和湾没什么区别。
月海的地势一般较低,类似地球上的盆地,月海比月球平均水准面低1-2千米,个别最低的海如雨海的东南部甚至比周围低6000米。月面的返照率(一种量度反射太阳光本领的物理量)也比较低,因而看起来显得较黑。
月陆和山脉
月面上高出月海的地区称为月陆,一般比月海水准面高2-3千米,由于它返照率高,因而看来比较明亮。在月球正面,月陆的面积大致与月海相等但在月球背面,月陆的面积要比月海大得多。从同位素测定知道月陆比月海古老得多,是月球上最古老的地形特征。
在月球上,除了犬牙交差的众多环形山外,也存在着一些与地球上相似的山脉。月球上的山脉常借用地球上的山脉名,如阿尔卑斯山脉,高加索山脉等等,其中最长的山脉为亚平宁山脉,绵延1000千米,但高度不过比月海水准面高三、四千米。山脉上也有些峻岭山峰,过去对它们的高度估计偏高。现在认为大多数山峰高度与地球山峰高度相仿,最高的山峰(亦在月球南极附近)也不过9000米和8000米。月面上6000米以上的山峰有6个,5000-6000米20个,4000-5000米则有80个,1000米以 上的有200个。月球上的山脉有一普遍特征:两边的坡度很不对称,向海的一边坡度甚大,有时为断崖状,另一侧则相当平缓。
除了山脉和山群外,月面上还有四座长达数百千米的峭壁悬崖。其中三座突出在 月海中,这种峭壁也称“月堑”。
月面辐射纹
月面上还有一个主要特征是一些较“年轻”的环形山常带有美 丽的“辐射纹”,这是一种以环形山为辐射点的向四面八方延伸的亮带,它几乎以笔直的方向穿过山系、月海和环形山。 辐射文长度和亮度不一,最引人注目的是第谷环形山的辐射纹,最长的一条长1800千米,满月时尤为壮观。其次,哥白尼和开普勒两个环形山也有相当美丽的辐射 纹。据统计,具有辐射纹的环形山有50个。
形成辐射纹的原因至今未有定论。实质上,它与环形山的形成理论密切联系。现 在许多人都倾向于陨星撞击说,认为在没有大气和引力很小的月球上,陨星撞击可能使高温碎块飞得很远。而另外一些科学家认为不能排除火山的作用,火山爆发时的喷 射也有可能形成四处飞散的辐射形状。
月谷(月隙)
地球上有着许多著名的裂谷,如东非大裂谷。月面上也有这种 构造----那些看来弯弯曲曲的黑色大裂缝即是月谷,它们有的绵延几百到上千千米,宽度从几千米到几十千米不等。 那些较宽的月谷大多出现在月陆上较平坦的地区,而那些较窄、较小的月谷(有时又称为月溪)则到处都有。最著名的月谷是在柏拉图环形山的东南连结雨海和冷海 的阿尔卑斯大月谷,它把月面上的阿尔卑斯山拦腰截断,很是壮观。从太空拍得的照片估计,它长达130千米,宽10-12千米。
月球表面有阴暗的部分和明亮的区域。早期的天文学家在观察月球时,以为发暗的地区都有海水覆盖,因此把它们称为“海 ”。著名的有云海、湿海、静海等。而明亮的部分是山脉,那里层峦叠嶂,山脉纵横,到处都是星罗棋布的环形山。位于南极附近的贝利环形山直径295公里,可以把整个海南岛装进去。最深的山是牛顿环形山,深达8788米。除了环形山,月面上也有普通的山脉。高山和深谷叠现,别有一番风光。
月球的正面永远都是向着地球,其原因是潮汐长期作用的结果。另外一面,除了在月面边沿附近的区域因天秤动而中间可见以外,月球的背面绝大部分不能从地球看见。在没有探测器的年代,月球的背面一直是个未知的世界。月球背面的一大特色是几乎没有月海这种较暗的月面特征。而当人造探测器运行至月球背面时,它将无法与地球直接通讯。
月球约一个农历月绕地球运行一周,而每小时相对背景星空移动半度,即与月面的视直径相若。与其他卫星不同,月球的轨道平面较接近黄道面,而不是在地球的赤道面附近。
相对于背景星空,月球围绕地球运行(月球公转)一周所需时间称为一个恒星月;而新月与下一个新月(或两个相同月相之间)所需的时间称为一个朔望月。朔望月较恒星月长是因为地球在月球运行期间,本身也在绕日的轨道上前进了一段距离。
因为月球的自转周期和它的公转周期是完全一样的,地球上只能看见月球永远用同一面向着地球。自月球形成早期,地球便一直受到一个力矩的影响引致自转速度减慢,这个过程称为潮汐锁定。亦因此,部分地球自转的角动量转变为月球绕地公转的角动量,其结果是月球以每年约38毫米的速度远离地球。同时地球的自转越来越慢,一天的长度每年变长15微秒。
月球对地球所施的引力是潮汐现象的起因之一。月球围绕地球的轨道为同步轨道,所谓的同步自转并非严格。由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为经天秤动。
严格来说,地球与月球围绕共同质心运转,共同质心距地心4700千米(即地球半径的2/3处)。由于共同质心在地球表面以下,地球围绕共同质心的运动好像是在“晃动”一般。从地球北极上空观看,地球和月球均以迎时针方向自转;而且月球也是以迎时针绕地运行;甚至地球也是以迎时针绕日公转的。
很多人不明白为甚么月球轨道倾角和月球自转轴倾角的数值会有这么大的变化。其实,轨道倾角是相对于中心天体(即地球)而言的,而自转轴倾角则相对于卫星。
月球的轨道平面(白道面)与黄道面(地球的公转轨道平面)保持着5.145 396°的夹角,而月球自转轴则与黄道面的法线成1.5424°的夹角。因为地球并非完美球形,而是在赤道较为隆起,因此白道面在不断进动(即与黄道的交点在顺时针转动),每6793.5天(18.5966年)完成一周。期间,白道面相对于地球赤道面(地球赤道面以23.45°倾斜于黄道面)的夹角会由28.60°(即23.45°+ 5.15°) 至18.30°(即23.45°- 5.15°)之间变化。同样地,月球自转轴与白道面的夹角亦会介乎6.69°(即5.15° + 1.54°)及3.60°(即5.15° - 1.54°)。月球轨道这些变化又会反过来影响地球自转轴的倾角,使它出现±0.002 56°的摆动,称为章动。
白道面与黄道面的两个交点称为月交点--其中升交点(北点)指月球通过该点往黄道面以北;降交点(南点)则指月球通过该点往黄道以南。当新月刚好在月交点上时,便会发生日食;而当满月刚好在月交点上时,便会发生月食。
月球背面的结构和正面差异较大。月海所占面积较少,而环形山则较多。地形凹凸不平,起伏悬殊最长和最短的月球半径都位于背面,有的地方比月球平均半径长4公里,有的地方则短5公里(如范德格拉夫洼地)。背面未发现“质量瘤”。背面的月壳比正面厚,最厚处达150公里,而正面月壳厚度只有60公里左右。
月球本身并不发光,只反射太阳光。月球亮度随日、月间角距离和地、月间距离的改变而变化。平均亮度为太阳亮度的1/465000,亮度变化幅度从1/630000至1/375000。满月时亮度平均为 -12.7等(见)。它给大地的照度平均为0.22勒克斯,相当于100瓦电灯在距离21米处的照度。月面不是一个良好的反光体,它的平均反照率只有7%,其余93%均被月球吸收。月海的反照率更低,约为 6%。月面高地和环形山的反照率为17%,看上去山地比月海明亮。月球的亮度随而变化,下表[]以满月亮度为100,列出不同月龄时的亮度值。从中可以看出,满月时的亮度比上下弦要大十多倍。
由于月球上没有大气,再加上月面物质的热容量和导热率又很低,因而月球表面昼夜的温差很大。白天,在阳光垂直照射的地方温度高达+127℃;夜晚,温度可降低到-183℃。这些数值,只表示月球表面的温度。用射电观测可以测定月面土壤中的温度,这种测量表明,月面土壤中较深处的温度很少变化,这正是由于月面物质导热率低造成的。
从月震波的传播了解到月球也有壳、幔、核等分层结构。最外层的月壳厚60~65公里。月壳下面到1,000公里深度是月幔,占了月球大部分体积。月幔下面是月核。月核的温度约1,000℃,很可能是熔融的,据推测大概是由Fe-Ni-S和榴辉岩物质构成。
月球运动
月球是距离地球最近的天体,它与地球的平均距离约为384401千米。它的平均直径约为3476千米,比地球直径的1/4稍大些。月球的表面积有3800万平方千米,还不如我们亚洲的面积大。月球的质量约7350亿亿吨,相当于地球质量的1/81,月面重力则差不多相当于地球重力的1/6。
月球的轨道运动
月球以椭圆轨道绕地球运转。这个轨道平面在天球上截得的大圆称“白道”。白道平面不重合于天赤道,也不平行于黄道面,而且空间位置不断变化。周期173日。月球轨道(白道)对地球轨道(黄道)的平均倾角为5°09′。
月球的自转
月球在绕地球公转的同时进行自转,周期27.32166日,正好是一个恒星月,所以我们看不见月球背面。这种现象我们称“同步自转”,几乎是卫星世界的普遍规律。一般认为是行星对卫星长期潮汐作用的结果。天平动是一个很奇妙的现象,它使得我们得以看到59%的月面。主要有以下原因:
1、在椭圆轨道的不同部分,自转速度与公转角速度不匹配。
2、白道与赤道的交角。
[天秤动
由于月球轨道为椭圆形,当月球处于近日点时,它的自转速度便追不上公转速度,因此我们可见月面东部达东经98度的地区,相反,当月处于远日点时,自转速度比公转速度快,因此我们可见月面西部达西经98度的地区。这种现象称为天秤动。又由于月球轨道倾斜于地球赤道,因此月球在星空中移动时,极区会作约7度的晃动,这种现象称为天秤动。再者,由于月球距离地球只有60地球半径之遥,若观测者从月出观测至月落,观测点便有了一个地球直径的位移,可多见月面经度1度的地区。这种现象称为天秤动。
[编辑本段]月食
月食是一种特殊的天文现象,指当月球运行至地球的阴影部分时,太阳,月球,地球,行成一条直线,太阳光被月球遮住,所以每当农历15日前后可能就会出现月食。
也就是说,此时的太阳、地球、月球恰好 (或几乎) 在同一条直线,因此从太阳照射到月球的光线,会被地球所掩盖。
以地球而言,当月食发生的时候,太阳和月球的方向会相差 180 度,所以月食必定发生在“望”(即农历15日前后)。要注意的是,由于太阳和月球在天空的轨道 (称为黄道和白道) 并不在同一个平面上,而是有约 5 度的交角,所以只有太阳和月球分别位于黄道和白道的两个交点附近,才有机会连成一条直线,产生月食。
月食分类
月食可分为月偏食、月全食及半影月食三种。当月球只有部分进入地球的本影时,就会出现月偏食;而当整个月球进入地球的本影之时,就会出现月全食。至于半影月食,是指月球只是掠过地球的半影区,造成月面亮度极轻微的减弱,很难用肉眼看出差别,因此不为人们所注意。
地球的直径大约是月球的4倍,在月球轨道处,地球的本影的直径仍相当于月球的2.5倍。所以当地球和月亮的中心大致在同一条直线上,月亮就会完全进入地球的本影,而产生月全食。而如果月球始终只有部分为地球本影遮住时,即只有部分月亮进入地球的本影,就发生月偏食。月球上并不会出现月环食。因为,月球的体积比地球小的多。
太阳的直径比地球的直径大得多,地球的影子可以分为本影和半影。如果月球进入半影区域,太阳的光也可以被遮掩掉一些,这种现象在天文上称为半影月食。由于在半影区阳光仍十分强烈,月面的光度只是极轻微减弱,多数情况下半影月食不容易用肉眼分辨。一般情况下,由于较不易为人发现,故不称为月食,所以月食只有月全食和月偏食两种。
另外由于地球的本影比月球大得多,这也意味着在发生月全食时,月球会完全进入地球的本影区内,所以不会出现月环蚀这种现象。
每年发生月食数一般为2次,最多发生3次,有时一次也不发生。因为在一般情况下,月亮不是从地球本影的上方通过,就是在下方离去,很少穿过或部分通过地球本影,所以一般情况下就不会发生月食。
据观测资料统计,每世纪中半影月食,月偏食、月全食所发生的百分比约为36.60%,34.46%和28.94%。
月球的构造
据猜想,月球可能是空心的。月球是冰行星,在与地球擦过时被地球吸引力,有了轨道。在探测月球时,发现月球表面有一部分是重金属,那一部分的密度比地球大(所以月球只以一面对着地球),然而行星的核是重金属组成的。刚才提到月球是冰行星,在被地球吸引时,表面开裂,水倾斜而出,导致地球的“诺亚洪水”,后来月核填补了此开裂,月球从此无核。再有,月球的平均密度比地球小,说明月球内部有大量空气存在。但这一理论有待深入考察。
[编辑本段]月球地形
环形山
环形山这个名字是伽利略起的。是月面的显着特征,几乎布满了整个月面。 最大的环形山是南极附近的贝利环形山,直径295千米,比海南岛还大一点。小的环形山甚至可能是一个几十厘米的坑洞。直径不小于1000米的大约有33000个。占月面表面积的 7-10%。
有个日本学者1969年提出一个环形山分类法,分为克拉维型(古老的环形山,一般都面目全非,有的还山中有山)哥白尼型(年轻的环形山,常有“辐射纹”,内壁一般带有同心圆状的段丘,中央一般有中央峰)阿基米德形(环壁较低,可能从哥白尼型演变而来 )碗型和酒窝型(小型环形山,有的直径不到一米)。
月海
在地球上的人类用肉眼所见月面上的阴暗部分实际上是月面上的广阔平原。由于历史上的原因,这个名不副实的名称保留下来。
已确定的月海有22个,此外还有些地形称为“月海”或“类月海”的。公认的22个绝大多数分布在月球正面。背面有3个,4个在边缘地区。在正面的月海面积略大于50%,其中最大的“风暴洋” 面积约五百万平方公里,差不多九个法国的面积总和。 大多数月海大致呈圆形,椭圆形,且四周多为一些山脉封闭住,但也有一些海是连成一片的。除了“海”以外,还有五个地形与之类似的“湖”——梦湖、死湖、夏湖、秋湖、春湖,但有的湖比海还大,比如梦湖面积7万平方千米,比汽海等还大得多。 月海伸向陆地的部分称为“湾”和“沼”,都分布在正面。湾有五个:露湾、暑湾、中央湾、虹湾、眉月湾;沼有腐沼、疫沼、梦沼三个,其实沼和湾没什么区别。
月海的地势一般较低,类似地球上的盆地,月海比月球平均水准面低1-2千米,个别最低的海如雨海的东南部甚至比周围低6000米。月面的返照率(一种量度反射太阳光本领的物理量)也比较低,因而看起来显得较黑。
月陆和山脉
月面上高出月海的地区称为月陆,一般比月海水准面高2-3千米,由于它返照率高,因而看来比较明亮。在月球正面,月陆的面积大致与月海相等但在月球背面,月陆的面积要比月海大得多。从同位素测定知道月陆比月海古老得多,是月球上最古老的地形特征。
在月球上,除了犬牙交差的众多环形山外,也存在着一些与地球上相似的山脉。月球上的山脉常借用地球上的山脉名,如阿尔卑斯山脉,高加索山脉等等,其中最长的山脉为亚平宁山脉,绵延1000千米,但高度不过比月海水准面高三、四千米。山脉上也有些峻岭山峰,过去对它们的高度估计偏高。现在认为大多数山峰高度与地球山峰高度相仿,最高的山峰(亦在月球南极附近)也不过9000米和8000米。月面上6000米以上的山峰有6个,5000-6000米20个,4000-5000米则有80个,1000米以 上的有200个。月球上的山脉有一普遍特征:两边的坡度很不对称,向海的一边坡度甚大,有时为断崖状,另一侧则相当平缓。
除了山脉和山群外,月面上还有四座长达数百千米的峭壁悬崖。其中三座突出在 月海中,这种峭壁也称“月堑”。
月面辐射纹
月面上还有一个主要特征是一些较“年轻”的环形山常带有美 丽的“辐射纹”,这是一种以环形山为辐射点的向四面八方延伸的亮带,它几乎以笔直的方向穿过山系、月海和环形山。 辐射文长度和亮度不一,最引人注目的是第谷环形山的辐射纹,最长的一条长1800千米,满月时尤为壮观。其次,哥白尼和开普勒两个环形山也有相当美丽的辐射 纹。据统计,具有辐射纹的环形山有50个。
形成辐射纹的原因至今未有定论。实质上,它与环形山的形成理论密切联系。现 在许多人都倾向于陨星撞击说,认为在没有大气和引力很小的月球上,陨星撞击可能使高温碎块飞得很远。而另外一些科学家认为不能排除火山的作用,火山爆发时的喷 射也有可能形成四处飞散的辐射形状。
月谷(月隙)
地球上有着许多著名的裂谷,如东非大裂谷。月面上也有这种 构造----那些看来弯弯曲曲的黑色大裂缝即是月谷,它们有的绵延几百到上千千米,宽度从几千米到几十千米不等。 那些较宽的月谷大多出现在月陆上较平坦的地区,而那些较窄、较小的月谷(有时又称为月溪)则到处都有。最著名的月谷是在柏拉图环形山的东南连结雨海和冷海 的阿尔卑斯大月谷,它把月面上的阿尔卑斯山拦腰截断,很是壮观。从太空拍得的照片估计,它长达130千米,宽10-12千米。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
月球
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。 第六阶段:月球的现状 月球经历了45亿年的演化,现今已成为一个内部能源近于枯竭、内部活动近于停滞的僵死的天体,仅有极其微弱的月震活动。小天体的撞击和巨大的温差是月球表面最主要的地质营力,它使岩石机械碎裂、月壤层增厚、地形缓慢夷平。现今月球的表面是一个无大气、无水、干燥、无声、无生命活动的死寂的世界。[15]
[1]在科学的概念里,月球是地球唯一的天然卫星,它围绕着地球奔腾回旋不息,它诞生40多亿年来,从未离开过地球的身旁,是地球最忠实的伴侣。 任何天体都有它形成、发展与衰老的演化过程。月球起源与演化的研究,对了解太阳星云的成分、分馏、凝聚与吸积过程、类地行星的形成与演化、地月系统的形成与演化等都具有重要意义。 月球的起源与演化一直是人类十分关注的自然科学的基本问题之一。100多年来曾有过多种有关月球起源与演化的假说,但至今仍众说纷纭,难以形成一个统一的说法。这些月球成因学说争论的焦点在于,月球是与地球一样,在太阳星云中通过星云物质的凝聚、吸积而独立形成,还是由地球分裂出来的一部分物质形成的?月球形成时就是地球的卫星,还是在后期的演化中被地球俘获而成为地球卫星的? 任何有关月球的起源的假说都必须符合以下一些基本事实:月球是地球的唯一卫星,月球的公转是围绕地月系统质量的质量中心旋转,月球的公转平面与地球的赤道面并不一致。月球的质量约为地球的1/81,月球的平均密度为3.34克/立方厘米,只有地球平均密度的60%。月球与地球的平均成分差异很大,月球比地球富含难熔元素,匮乏挥发性元素和亲铁元素。月球比地球缺水,比地球还原性强。月球内部也有核、幔、壳的圈层状结构。月球表面岩石的年龄一般均大于31亿年,表明月球的演化主要是在其形成后的15亿年内进行的。月球现今是一个内能接近枯竭而活动近于僵死的天体。 地月系统模拟图
[2]历史上有关月球起源的假说,大致可归纳为共振潮汐分裂说、同源说、浮获说和撞击成因说共4种类型。其中,前三种月球起源假说虽然对月球的化学成分、结构、运行轨道和地月关系的基本特征的解释均有不同程度的依据,但在地月成分与自转速度的差异,氧及其他同位素组成的相似性等方面,仍存在许多难以自圆其说的缺点。随着对月球研究的不断深入和认识的逐步深化,科学家又提出了新的假说。最新提出的撞击成因说引起了科学家们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。[3]
编辑本段分裂说
地月分裂说
[4]月球的共振潮汐分裂说是月球起源研究中著名的假说之一。 月球的共振潮汐分裂说坚持月球是地球的亲生女儿,即月球是从地球中分裂出来的。坚持这一假说的科学家认为,在地球形成的早期,地球呈熔融态,由于潮汐共振作用,地球自转不稳定,即使只考虑地球和月球的角动量,当时地球自转的周期也仅有4小时,加上太阳的潮汐作用,地球的自转周期可缩短到2小时,因此有理由相信,在地球历史的早期,地球飞快地旋转,其自转速率比现在要高得多。若初期的地球是熔融状态,地球物质在地赤道面上将出现膨胀区,使在赤道面上的一部分熔体分离,或者说这部分熔融物质在地球高速自转情况下从赤道区被甩了出去,甩出去的物质在地球附近的行星际空间凝聚,冷凝后形成月球。一些持这种假说的人还认为,地球上的太平洋就是分裂出月球后留下的“疤痕”。由于这种假说提出月球是从地球分离出去的,因此这种假说被形象地比喻为“母女说”。不过,由于这一假说与地月系的基本特征不相符,现在已经被大多数科学家所摈弃。[5]
编辑本段同源说
地月同源说
[6]与俘获说、分裂说和碰撞成因说一样,月球的同源说也是月球起源研究的著名假说之一。 月球起源的同源说坚信月球与地球是姐妹或兄弟关系,月球与地球在太阳星云凝聚过程中同时“出生”,或者说在星云的同一区域同时形成了地球和月球。 主张这一假说的科学家认为,在原始太阳星云内,温度和化学成分取决于与太阳的距离。太阳系的各个行星是在星云中不同的区域、由不同化学成分的星云物质凝聚、吸积而形成的。月球与地球在太阳星云中相距较近,形成过程相似,属于同时形成的“兄弟”。对于地球与月球成分上的差异,他们解释说,形成行星时,开始是凝聚、吸积并形成以铁为主要成分的行星核,金属核进一步增长之后,星云中残留的非金属物质才凝聚,月球就是地球形成后剩下的残余物质所组成的。同源说力图合理解释地球与月球成分差异和月球的核、幔与壳的组成,但其模式与太阳星云的凝聚过程和地月系的运动特征不尽相符。因此,这一假说也不尽人意。[7]
编辑本段俘获说
地月俘获说
[8]月球捕获说认为,月球是地球抢过来的“女儿”,即地球与月球由不属于同一星云团的物质形成,由于地-月轨道的变化,在1~10个地球半径范围内,外来的月球在飞过地球附近时被地球的强大引力所捕获,最终成为一颗环绕地球运行的卫星。 主张俘获说的科学家认为,地球和月球处在太阳星云的不同部位,由化学成分不同的星云物质凝聚而形成。月球原来的运行轨道与地球的轨道面交角很小(约5度),当月球运行到地球附近时,在地月距离为10个地球半径的范围内,月球可能被地球俘获而成为地球的卫星。 著名有天文学家阿尔芬认为,月球曾经是一个独立的行星,月球被地球俘获时,与地球的距离大约为26个地球半径,与地球的平面的交角为149度。如果月球进入地球的洛希限,潮汐会产生很强的非均一重力场,月球表面的岩石将会破碎,并进入月球运行的轨道空间,大部碎片物质又返回月球,撞击月球,在月表产生大量的月海盆地。月球正面在39亿年前发生的开凿月海事件——雨海事件也许是俘获说的重要证据。通过地月轨道的精细计算及激光测距的数据表明,现今月球的轨道愈来愈远离地球,每年后退约3.8厘米。不过,俘获说只能解释部分观 大踫撞
[9]测事实,不能令人满意。因此,不断有人另辟蹊径,提出新的假说。[10]
编辑本段撞击说
撞击说图示
[11]分裂说、同源说、浮获说这些关于月球起源的假说只能解释部分观测事实,不能令人满意。因此不断有科学家另辟蹊径,提出新的假说。其中,20世纪80年代中期提出的撞击成因说引起了人们的极大关注,它能解释更多的观测事实,是当前较合理的月球起源假说。 撞击成因说也被称为“大碰撞分裂说”,这一假说认为,地球早期受到一个火星大小的天体撞击,撞击碎片(即两个天体的硅酸盐幔的一部分)最终形成了月球。 撞击成因说认为,在太阳系形成早期,行星际空间有大量星云,星云经过碰撞、吸积而逐渐增大。大约在相当地月系统存在的空间范围内,形成了一个质量相当于现在地球质量9/10的“原地球”和另一个火星大小的天体“原月球”。这两个天体在各自的演化过程中都形成了以铁为主的金属核和由硅酸盐组成的幔和壳。由于这两个天体相距不远,因此有机会发生碰撞。剧烈的碰撞不仅使“原地球”的自转产生了偏斜,而且使“原月球”碎裂,幔和壳变热蒸发,膨胀的气体“裹挟”着尘埃和少量的幔物质飞离原月球。被分离的金属核因受膨胀气体的阻碍而减速,被“原地球”吸积并变成了地球的一部分。飞离的气体尘埃物质受地球引力的作用,呈盘状分布在洛希限以外的空间,它们通过吸积,先形成一些小天体,然后像滚雪球一样不断吸积增长,最终形成现在的月球。 撞击成因说可以合理地解释地月系统的基本特征,如地球自转轴的倾斜与自转加速、月球轨道与地球赤道面的不一致、月球是太阳唯一的与主行星质量比为1/81的卫星、月球富含难熔元素而匮乏挥发性元素和亲铁元素、月球的密度比地球低以及月球形成初期曾产生过广泛熔融、存在过岩浆洋等事实,因此撞击成因说是当今较为合理、较为成熟的月球起源学说,逐渐获得了大多数学者的支持。[11] [8] 绕月航天器Smart-1
[12]2006年,欧洲宇航局的绕月航天器Smart-1完成对月球表面化学成分的测定,测定结果显示月球表面含有包括钙和镁在内的一些化学元素。一直以来人们关于月球是由地球一部分撞击分裂形成,这次发现为月球起源的“撞击分裂说”提供了有力证据。 20世纪60年代晚期和20世纪70年代早期,美国宇航员阿波罗号登月任务中带回月岩样本,自那以后,行星学家们对这些月岩与地球深出地函区域发现的岩石十分的相似感到惊讶。当更多的科学家细致的观察了月岩,月球起源问题变得更具有悬疑,科学家们发现月球与地球深处的岩石仍有着很大的差别。最关键的是,月岩当中的同位素与地球岩石当中的发现并不一致。 据一些科学家推测,在地球生成的早期,曾经有一个相当于火星大小的星球撞击地球,造成的碎片后来聚集形成了月球。如果情况的确如此,月球的含铁量将会比地球低,而镁和铝这样的轻元素的含量则会高一些。 关于月球的起源另外一种理论认为,地球和月球是从一块气体尘埃云中同时产生两个天体。但自从“阿波罗计划”之后,科学家获得了大量令人震撼的照片和382千克月球的土壤岩石。月球起源“撞击分裂说”逐渐占据了上风。[13]
编辑本段核爆炸说
2010年初,南非和荷兰的两位科学家又提出了一种新的理论和解释。他们认为,月球并非是由于太空撞击或太空爆炸所造成的,而是由于地球自身的一次核爆炸而从地球分离出去的。 南非西开普大学科学家罗伯-德-梅耶尔和荷兰阿姆斯特丹自由大学科学家维姆-范-维斯特伦恩是根据一种核裂变理论提出这种观点的,这种核裂变理论早在19世纪初就有科学家描述过。该理论认为,地球和月球都来自宇宙中同一滴旋转的熔岩,后来一部分分离出去形成了如今的月球。然而,除了撞击原因以外,当时的科学家无法用其他理由来解释形成月球的那一部分熔岩是如何分离出去的。 两位科学家认为,形成月球的那部分熔岩是在地球的一次核爆炸中脱离出去的。在他们的研究论文--《月球起源的另一种假设》中,两位科学家解释说,如果月球是由于一次撞击性的外部力量而从地球分离出去的话,那么它应该由撞击天体和地球的某些物质组成。他们说,“太阳系进化的模型显示,地球的化学组成和撞击天体的化学组成不可能是同样的。” 然而,根据探测到的月球标本显示,月球在化学组成上几乎与地球是相同的。这一发现表明,月球的分离过程没有撞击天体的介入。科学家们在研究论文中解释说,“月球的化学组成与地球越相似,说明月球越有可能是直接形成于地球物质。” 因此,科学家们相信,造成月球直接从地球分离出去并进入轨道的能量是由地球地幔边界的一种超临界反应堆所产生。这种反应堆产生足够的热量使得地球上的硅酸盐等物质被蒸发并喷射出去。美国《科技新时代》杂志科学家克雷-迪洛维也支持两位科学家的观点。迪洛维认为,“根据他们的解释,地心引力在地球的赤道平面附近的地表浓缩了大量的重金属,如铀和钍等。当这些重金属积聚到足够多,浓度足够大,就会产生一种失控的核链式反应,这和核电站的某些原理有些相似。” 迪洛维解释说,“通过这种方式,一种自然形成的地球核反应堆被推到了超临界水平,然后就会爆炸。月球从地球分离出去后,被巨大的核爆炸力量推动进入公转轨道。当然,这种理论很难检验。但是,人们确实知道地球核反应堆的存在,它所产生的遗留物就是如今开采的铀矿。” 梅耶尔和维斯特伦恩认为,要想证明他们的理论,需要依靠未来的月球探测任务带回月球更深内部的物质样本。[1]
编辑本段月球的演化阶段
月球的演化
[14]科学家将月球漫长的演化历程分为六个阶段: 第一阶段:月球的形成前阶段(距今58亿年~46亿年) 太阳系的元素起源(距今58亿年~50亿年):现今太阳系元素和同位素组成的格局是在前一代恒星的元素合成的基础上形成的,这些元素(及其同位素)是形成太阳星云的物质基础。 太阳星云的凝聚(距今50亿年~46亿年):在以原太阳为中心的太阳星云盘中,元素产生分馏、凝聚、吸积和级序增生,在不同距离的不同空间和温度区域,形成化学成分不同的星云。 第二阶段:月球的形成及其初始阶段(距今46亿年~44亿年) 根据各种测年技术对陨石形成年龄的测定,太阳系各种天体的形成年龄一般为45.6亿年。月球和地球岩石的精细测年表明,月球形成的年龄为45亿年,而地球的形成年龄约为44.8亿年。 月球的早期熔融(距今45亿年~44亿年):根据月球热历史的研究,在月球形成后不久,整个月球曾发生过多次局部熔融,月球的大部分曾被加热到1000℃以上,甚至形成过全球性的岩浆洋。月球内部物质通过熔融、重力调整,逐渐形成月核、月幔、月壳结构。原始月壳可能因后期大量小天体的撞击而难以保存。 第三阶段:月球的区域熔融与月球高地形成阶段(距今44亿年~40亿年) 距今41亿年前,月球产生过一次规模较大岩浆活动,通过岩浆分离作用,形成了斜长岩高地(月陆区)。月球高地的岩石一般都有复杂的碎裂变形或多次撞击作用的变质历史。小天体的频繁撞击,使月球高地削低了1500米~2000米。距今40亿年前,斜长岩局部熔融,产生了富含放射性元素和难熔元素的岩浆活动,岩浆凝结后就形成了非月海玄武岩(克里普岩和苏长岩)。斜长岩与非月海玄武岩是月面残存的最古老的岩石。 第四阶段:月海的形成与月海泛滥阶段(距今40亿年~31亿年) 月海的形成(雨海事件)(距今40亿年~39亿年)阶段:雨海纪是月球灾变时期。由于大量小天体猛烈而频繁地撞击月球,在月球表面就开凿形成了月海盆地(大型环状构造)。根据各月海岩石的同位素年龄研究,月海的形成年龄集中在39亿年前±0.5亿年 ,各月海的形成次序从早到晚大致是酒海、澄海、湿海、危海、雨海、东海…… 月海泛滥(月海玄武岩喷发)(距今39亿年~31亿年)阶段:月海玄武岩喷发填充月海发生在距今39亿年前~31亿年前,是由月球产生的第二次大规模火山岩浆活动引起的。根据月海玄武岩的年龄测定,至少有5次月海玄武岩喷发。月海玄武岩填充的时间依次为:雨海西→雨海东→湿海→危海→雨海→静海→丰富海→澄海→风暴洋。 第五阶段:月球晚期演化阶段(距今31亿年至今) 这一阶段在月球地质历史中称为艾拉托逊纪与哥白尼纪。31亿年以来,虽然小天体的撞击引起的小型火山喷发活动时有发生,潮汐作用诱发的月震活动仍较活跃,但月球表面形貌已基本定型,月球内部的化学演化处于停滞状态。距今20亿年前,月球似乎经受过一次明显的加热事件,但原因不明。艾拉托逊纪形成的辐射撞击坑、辐射纹较暗淡或已消失。哥白尼纪形成的辐射坑则具有明显的辐射纹。 局部的小型的岩浆活动和火山活动仍可能存在,如链状月坑的分布可能是沿断裂分布的火山口,也可能是碎裂的彗星连续撞击月表所形成的。月岩和月壤在月球表面的暴露年龄证明,近500万年以来,月球表面仍然不断地遭受到太阳系小天体的撞击。 第六阶段:月球的现状 月球经历了45亿年的演化,现今已成为一个内部能源近于枯竭、内部活动近于停滞的僵死的天体,仅有极其微弱的月震活动。小天体的撞击和巨大的温差是月球表面最主要的地质营力,它使岩石机械碎裂、月壤层增厚、地形缓慢夷平。现今月球的表面是一个无大气、无水、干燥、无声、无生命活动的死寂的世界。[15]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询