求不定积分∫{[ln(e^x+1)]/e^x}dx

青蛙好吵
2011-12-02 · 超过10用户采纳过TA的回答
知道答主
回答量:23
采纳率:0%
帮助的人:22.6万
展开全部
想办法换元,简化结构,然后利用分部积分去掉对数符号,就成会算的多项式积分了
所求积分=∫{[ln(e^x+1)]/e^2x}e^x dx=∫{[ln(e^x+1)]/e^2x}de^x
令t=e^x 则积分=∫{[ln(t+1)]/t^2}dt=∫ln(t+1)d(-1/t)=-ln(t+1)*1/t+∫1/tdln(t+1)=∫(1/t(1+t)dt-In(1+t)*1/t
=Int-In(1+t)-In(1+t)/t
最后回带,结果x-In(1+e^x)-In(1+e^x)/e^x
这坑爹的符号,写起来容易打起来气死人
反正方法就是这样,你再算下,看看对不对
drug2009
2011-12-02 · TA获得超过1.4万个赞
知道大有可为答主
回答量:6644
采纳率:100%
帮助的人:2769万
展开全部
∫ln(e^x+1)dx/e^(x)
=-∫ln(e^x+1)de^(-x)
=-e^(-x)ln(e^x+1) +∫e^(-x)*(e^x)dx/(1+e^x)
=-e^(-x)ln(e^x+1)+∫dx/(1+e^x)
=-e^(-x)ln(e^x+1)+∫[1-e^x/(1+e^x)]dx
=-e^(-x)ln(e^x+1)+x-ln(e^x+1)+C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式