数列An=1/n^2,Sn为其前n项和,当n≥2时证明6n/(n+1)(2n+1)<Sn<5/3
展开全部
n>=2时An=1/n^2<1/[(n+1/2)(n-1/2)]=1/(n-1/2)-1/(n+1/2),
∴Sn=1+1/2^2+1/3^2+……+1/n^2
<1+1/4+1/2.5-1/3.5+……+1/(n-1/2)-1/(n+1/2)
<1.65-1/(n+1/2)<5/3.
Sn=1+1/2^2+1/3^2+……+1/n^2
>=5/4,
6n/[(n+1)(2n+1)]<5/4,
<==>24n<5(n+1)(2n+1)
<==>10n^2-9n+5>0,
△=9^2-4*10*5<0,上式成立,
∴Sn>6n/[(n+1)(2n+1)].
∴Sn=1+1/2^2+1/3^2+……+1/n^2
<1+1/4+1/2.5-1/3.5+……+1/(n-1/2)-1/(n+1/2)
<1.65-1/(n+1/2)<5/3.
Sn=1+1/2^2+1/3^2+……+1/n^2
>=5/4,
6n/[(n+1)(2n+1)]<5/4,
<==>24n<5(n+1)(2n+1)
<==>10n^2-9n+5>0,
△=9^2-4*10*5<0,上式成立,
∴Sn>6n/[(n+1)(2n+1)].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询