若椭圆x^2/m+y^2=1(m>1)与双曲线x^2/n-y^2=1有共同的焦点F1,F2,p是两曲线的一个交点,△F1PF2的面积是?

慕野清流
推荐于2021-02-09 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2346万
展开全部
共焦点,则 m-1=n+1=c^2,所以 m-n=2,且由2c^2=m-1+n+1=m+n 得 2c=√[2(m+n)] 。
两方程联立,解得 y^2=(m-n)/(m+n)=2/(m+n),
所以 y 纵坐标的绝对值为 |yP|=√2/√(m+n)。
因此,所求面积=1/2*|F1F2|*|yP|=1/2*√[2(m+n)]*√2/√(m+n)=1。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式