求∫dx/(x^2+x+1)^2的不定积分
展开全部
∫1/(x²+x+1)² dx
= ∫1/[(x+1/2)²+3/4]² dx
令x+1/2=√3/2*tanθ,dx=√3/2*sec²θ dθ
sinθ=(x+1/2)/√(x²+x+1),cosθ=(√3/2)/√(x²+x+1)
原式= (√3/2)∫sec²θ/(3/4*sec²θ)² dθ
= (√3/2)(16/9)∫sec²θ/sec⁴θ dθ
= 8/(3√3)*∫cos²θ dθ
= 4/(3√3)*∫(1+cos2θ) dθ
= 4/(3√3)*(θ+1/2*sin2θ) + C
= 4/(3√3)*arctan[(2x+1)/√3] + (2x+1)/[3(x²+x+1)] + C
= ∫1/[(x+1/2)²+3/4]² dx
令x+1/2=√3/2*tanθ,dx=√3/2*sec²θ dθ
sinθ=(x+1/2)/√(x²+x+1),cosθ=(√3/2)/√(x²+x+1)
原式= (√3/2)∫sec²θ/(3/4*sec²θ)² dθ
= (√3/2)(16/9)∫sec²θ/sec⁴θ dθ
= 8/(3√3)*∫cos²θ dθ
= 4/(3√3)*∫(1+cos2θ) dθ
= 4/(3√3)*(θ+1/2*sin2θ) + C
= 4/(3√3)*arctan[(2x+1)/√3] + (2x+1)/[3(x²+x+1)] + C
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |